Arjuna JEE 2.0 2026

Chemistry

Chemical Bonding and Molecular Structure

DPP: 6

Total Duration-36 Mins.

- Q1 A molecule MX_4 has a square planar shape. The number of non-bonding pair of electrons is
 - (A) 2

(B) 1

- (C) 3
- (D) 0
- **Q2** The percentage of s-character in the hybridized orbitals of B in BF_3 is
 - (A) 25
- (B) 50
- (C) 75
- (D) 33.3
- **Q3** In which of the following pairs both the species have sp^3 hybridization?
 - (A) $\mathrm{SiF}_4,\mathrm{BeH}_2$
 - (B) NF_3 , H_2O
 - (C) NF_3 , BF_3
 - (D) H_2S , BF_3
- Q4 Which of the following statements is correct?
 - (A) sp^3 hybrid orbitals have equal s and p character.
 - (B) The bond angle decreases with the decrease of s character of the hybridized orbital.
 - (C) Resonance decreases the stability of a molecule.
 - (D) Resonance is due to the delocalization of sigma electrons.
- **Q5** The percentage s-character of the hybrid orbitals in methane, ethene and ethyne are respectively
 - (A) 25, 33, 50
 - (B) 25, 50, 75
 - (C) 50, 75, 100
 - (D) 10, 20, 40
- ${f Q6}$ The percentage of p-character of the hybrid orbitals in graphite and diamond are respectively
 - (A) 33 and 25
- (B) 50 and 75

- (C) 67 and 75
- (D) 33 and 75
- **Q7** Pick out the incorrect statement from the following
 - (A) sp hybrid orbitals are equivalent and are at an angle of 180° with each other.
 - (B) sp^2 hybrid orbitals are equivalent and bond angle between any two of them is 120°
 - (C) sp^3d^2 hybrid orbitals are equivalent and are oriented towards corners of a regular octahedron.
 - (D) sp^3d^3 hybrid orbitals are not equivalent.
- **Q8** The hybridization of carbon in molecule ${\rm CO}_2$ is
 - (A) sp
 - (B) sp^2
 - (C) sp^3
 - (D) sp^3d
- Q9 What is the type of hybridisation found in methane?
 - (A) sp^3
- (B) sp^2
- (C) sp^1
- (D) None of these
- Q10 The hybridization at carbons involved in $\overset{*}{C}-\overset{*}{C}$ bond in $HC \equiv \overset{*}{C}-\overset{*}{C}H=CH_2$ is
 - (A) sp^3-sp^2
 - (B) sp^3-sp^3
 - (C) $sp-sp^2$
 - (D) $sp-sp^3$
- **Q11** The hybridisation and shape of ClO_3^- is
 - (A) sp^3 and tetrahedral
 - (B) sp^3 and triangular pyramidal
 - (C) sp^3 and triangular planar
 - (D) sp^3d and trigonal bipyramidal

- **Q12** The state of hybridization of Xe in XeF_4 is (A) sp^2

 - (B) sp^3
 - (C) sp^3 d
 - (D) sp^3d^2
- **Q13** sp^2 -hybridization is shown by
 - (A) BeCl_2
 - (B) ${
 m BF}_3$
 - (C) NH_3
 - (D) ${
 m XeF}_2$

Answer	Key
--------	-----

Q1	(A)	Q8	(A)
Q2	(D)	Q9	(A)
Q3	(B)	Q10	(C)
Q4	(B)	Q11	(B)
Q5	(A)	Q12	(D)
Q6	(C)	Q13	(B)
Q7	(D)		

Master NCERT with PW Books APP