Arjuna 2.0 JEE 2026

T.F.T. - 05

Chemical Bonding

By ATS Sir

- 1. Which of the approaching axis is not appropriate to form π -bond by two py-orbitals.
 - (A) y-axis
- (B) x-axis
- (C) z-axis
- (D) No suitable axis
- 2. Which of the following elements does not form stable diatomic molecules?
 - (A) Iodine
- (B) Phosphorus
- (C) Nitrogen
- (D) Oxygen
- 3. Which of the following combination will not form π -
 - (A) p-p overlapping (B) s-p overlapping
 - (C) d-d overlapping (D) d-p overlapping
- 4. Choose the correct order of bond strength by overlapping of atomic orbitals
 - (A) 1s-1s > 1s-2s > 1s-2p
 - (B) 2s-2s > 2s-2p > 2p-2p
 - (C) 2s-2p > 2s-2s > 2p-2p
 - (D) 1s-1s > 1s-2p > 1s-2s
- 5. The possible orientations in space for a d-orbital is
 - (A) 7
- (B) 3
- (C) 1
- (D) 5
- Which of the following orbital is having longest 6.
 - (A) 3p
- (B) 3d
- (C) 2p
- (D) 4d
- 7. If x-axis is the internuclear axis, π -bond is formed by overlap between:
 - (A) p_y and d_{xy}
- (B) p_x and d_{xy}
- (C) p_x and $d_{x^2-v^2}$
- (D) None of these
- 8. Which of the molecule has p - p overlapping?
 - (A) Cl_2
- (B) HCl
- (C) H₂O
- (D) NH₃
- d₂ orbital is combination of: 9.

- **10.** If internuclear axis is y then π - bond is form by -
 - (A) $p_x + p_x$
- (B) $s + p_x$
- (C) $p_v + p_v$
- (D) $p_x + p_y$
- In which of the following pair of elements the π -bond formation tendency is maximum.
 - (A) S and O
- (B) Si and O
- (C) P and O
- (D) Cl and O
- **12.** Two p_z orbitals from two atoms can forma σ -bond when they approach along.
 - (A) x-axis
- (B) z-axis
- (C) y-axis
- (D) None
- 13. Match the overlapping of orbitals with the type of bond formed. (Consider x-axis as internuclear axis.)

Column-I		Column-II	
(P)	$2s + 2p_x$	(1)	π-bond
(Q)	$2p_y + 2p_y$	(2)	σ- bond
(R)	$d_{xy} + p_z$	(3)	δ-bond
(S)	$d_{yz} + d_{yz}$	(4)	no bond formation

	P	Q	R	\mathbf{S}
(A)	1	2	3	4
(B)	2	1	4	3
(C)	3	1	2	4
(D)	4	3	2	1

- 14. If two different non-axial d-orbitals having 'xz' nodal plane form π -bond by overlapping each other, then internuclear axis will be:
 - (A) x
- (B) y
- (C) z
- (D) They don't form π -bond
- 15. Assuming the bond direction to the s-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding?
 - (I) s-orbital of A and p_x -orbital of B
 - (II) s-orbital of A and pz orbital of B
 - (III) p_y -orbital of A and p_z orbital of B
 - (IV) s-orbital of both (A) and (B)
 - (A) I and IV
- (B) I and II
- (C) III and IV
- (D) II and IV

Answer Key

- **(A)** 1.
- 2. **(B)**
- 3. **(B)**
- 4. **(D)**
- **(D)**
- **(D)**
- 7. **(A)**
- 8. **(A)** 9. **(B)**
- 10. **(A)**
- 11. **(D)**
- **12. (B)**
- **13. (B)**
- **14. (D)**
- **15. (D)**

Catch Me On Telegram Group

https://t.me/Chemistry_by_AmitabhSir

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if