

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

B.Tech - COMPUTER SCIENCE AND ENGINEERING

 $\mathbf{1}^{\text{st}}$ Year (R24) Course Structure and Syllabus **Applicable From 2024-25 Admitted Batch**

I YEAR I SEMESTER (I SEMESTER)

S. No.	Course Code	Course Title	Course Area		ours Wee		Credits	Scheme of Examination Maximum Marks		
				L	Т	Р		Internal (CIA)	External (SEE)	Total
		Theory								
1	2410001	Matrices and Calculus	BS	3	1	0	4	40	60	100
2	2410009	Engineering Chemistry	BS	3	0	0	3	40	60	100
3	2410501	Problem Solving using C and C++	ES	3	0	0	3	40	60	100
4		Principles of Electrical and Electronics Engineering	ES	3	0	0	3	40	60	100
		Laboratory								
1	2410072	Engineering Chemistry Laboratory	BS	0	0	2	1	40	60	100
2		Computer Aided Engineering Graphics	ES	1	0	4	3	40	60	100
3	2410271	Principles of Electrical and Electronics Engineering Laboratory	ES	0	0	2	1	40	60	100
4	2410571	Problem Solving using C and C++ Laboratory	ES	0	0	2	1	40	60	100
		Skill Development								
1	2410596	Web Application Development	SDC	0	0	2	1	40	60	100
		Mandatory								
1	2410026	Yoga and Inner Engineering	MC	0	0	0	0	-	-	-
		Induction Program	-	-	-	-	-	-	-	-
	Total Credits						20	360	540	900

I YEAR II SEMESTER (II SEMESTER)

S. No.	Course Course Title Course Hou				urs l	Per	Credits	Sc	Scheme of		
	Code		Area	Week			Examinat		_		
								Maximum Marks		_	
					T	Р		Internal (CIA)	External (SEE)	Total	
		Theory									
1		Differential Equations and Vector Calculus	BS	3	1	0	4	40	60	100	
2	2420008	Applied Physics	BS	3	0	0	3	40	60	100	
3		English for Skill Enhancement	HSMC	3	0	0	3	40	60	100	
4		Essentials of Problem Solving using Python	ES	3	0	0	3	40	60	100	
		Laboratory									
1	2420372	Engineering Workshop	ES	0	1	4	3	40	60	100	
		Applied Physics Laboratory	BS	0	0	2	1	40	60	100	
3	2420073	English Language and Communication Skills Laboratory	HSMC	0	0	2	1	40	60	100	
4		Essentials of Problem Solving using Python Laboratory	ES	0	0	2	1	40	60	100	
		Skill Development									
1	2420027	Public speaking skills	SDC	0	0	2	1	40	60	100	
		Mandatory									
1		Foreign Language*	MC	0	0	0	0	•	-	-	
		Induction Program									
	Total Credits						20	360	540	900	

- Students can choose any one of the foreign language from the given list
 i) 24X0FL1 French

 - ii) 24X0FL2 German
 - 24X0FL3 Spanish 24X0FL4 Korean iii)
 - iv)

2410001: MATRICES AND CALCULUS

(CSE, CSD, CSM, ECE, EEE, MECH, CIVIL)

I Year B.Tech. I Sem

LTPC

3 1 0 4

Course Overview:

Matrix algebra and calculus are essential for understanding and solving complex problems in many scientific and engineering fields. This course provides the mathematical foundation for advanced topics and applications. This course covers matrix theory, linear algebra and calculus. Linear algebra is a branch of mathematics that studies system of linear equations and the properties of matrices. The calculus part of the course typically covers differential and its applications, and integration techniques. Matrix algebra allows us to think of a matrix holistically, generalize and compute derivatives important matrix factorizations, understand how differentiation formulas must be reimagined in large scale computing. Calculus is used to model and solve real- world problems.

Pre-requisites: Mathematics courses of 10+2 year of study.

Course Objectives: The student will try to learn

- Types of matrices and their properties, concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigen values, eigenvectors and reduction of quadratic form to canonical form by orthogonal transformation.
- Geometrical approach to the mean value theorems and their application to the mathematical problems. Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative and finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications.

Course outcomes: After successful completion of the course, students should be able to **CO1:** Write the matrix representation of a set of linear equations and to analyses the solution of the system of equations.

CO2:Find the Eigenvalues and Eigenvectors and reduce the quadratic form to canonical form using orthogonal transformations.

CO3:Solve the applications on mean value theorems and evaluate improper integrals using Beta and Gamma functions.

CO4:Find the extreme values of functions of two variables with/ without constraints.

CO5: Evaluate the multiple integrals and apply the concept to find areas, volumes.

UNIT-I:Matrices 10 L

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations, L-Udecomposition method.

UNIT-II: Eigen values and Eigenvectors

10 L

Eigenvalues, Eigen vectors and their properties(without proof), Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrixbyCayley-

HamiltonTheorem,QuadraticformsandNatureoftheQuadraticForms,Reductionof Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III: Calculus 8 L

Mean value theorems: Rolle's Theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series (without proofs).

Beta and Gamma functions and their applications(properties without proof).

UNIT-IV: Multivariable Calculus (Partial Differentiation and applications) 10 L

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence-

independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus(Integration)

10 L

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals, Change of variables (Cartesian to polar) for double and triple integrals (Cartesian to Spherical and Cylindrical polar coordinates).

Applications: Areas (by double integrals) and volumes (by triple integral).

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition,2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5thEditon,2016.

REFERENCE BOOKS:

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley & Sons,2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition,Pearson, Reprint, 2002.
- 3. H. K. Dassand Er. RajnishVerma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

Course overview:

- 1. **Importance of course** It helps engineers understand the nature of different materials. It also helps engineers learn how to work with different types of matter without causing pollution or waste.
- 2. Brief about course- To impart knowledge on the fundamental concepts of chemistry

Involved in application of several important engineering materials that are used in Industry/day to day life.

3. Applications of course: Engineering chemistry graduates use raw materials and chemicals to design, manufacture, and test new products, systems and machinery which are used in numerous industries.

Prerequisites: chemistry knowledge at Pre- University level

Course Objectives: The students will try to learn

- 1. Knowledge about desalination of brackish water and treatment of municipal water.
- 2. Fundamental aspects of battery chemistry, significance of corrosion its control to protect the structures.
- 3. Knowledge of polymers, conducting polymers, bio-degradable polymers and fiber reinforced plastics.
- 4. Basic concepts of petroleum and its products.
- 5. Knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes: After successful completion of the course, students should be able to

- 1. Apply softness of water by ion exchange process.
- 2. Analyze the various types Factors affecting of corrosion.
- 3. Understand the fundamental concepts of polymers
- 4. Analyze the various type of Gaseous Fuels.
- 5. Evaluate the smart materials and their Applications.

Course articulation matrix

PO/PS	PO	PO	PO	PO	PO	PO	P	P	P	PO	PO	PSO	PS	PS
O/CO	1	2	3	4	5	6	O	O	O	10	11	1	O2	O3
							7	8	9					
CO1	2	4	2	1	-	-	1	-	-	-	-	1	1	-
CO2	2	4	3	4	2	1	1	1	-	-	-	1	1	-
CO3	1	2	1	2	1	2	1	-	-	-	-	1	1	-
CO4	1	4	4	5	1	2	1	-	-	-	-	1	1	-
CO5	1	4	4	5	1	2	1	-	-	-	-	1	1	-

UNIT - I: Water and its treatment: [8]

Introduction to hardness of water – Estimation of hardness of water by complex ometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water-Disinfection of potable water by chlorination and break-point chlorination.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of Brackish water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion [8]

Introduction-Classification of batteries-primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell.

Construction and applications of Hydrogen Oxygen fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion mechanism of electrochemical corrosion,

Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods. Surface coatings-Metallic coatings-Hot dipping-Galvanisation, Tinning

UNIT - III: Polymeric materials: [8]

Definition – Classification of polymers with examples – Types of polymerization–addition (Mechanism of free radical addition) and condensation polymerization with examples – Nylon 6:6.

Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC ,Teflon, Fiber reinforced plastics (FRP).

Rubbers: Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S,Thiokol rubber.

Conducting polymers: Characteristic, Classification and applications of conducting polymers. **Biodegradable polymers:** Concept and advantages - Poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining,. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG.Biodiesel-Transesterification-advantages.

UNIT - V: Engineering Materials: [8]

Cement: Portland cement, its composition, setting and hardening, special cements-white cement, waterproof cement, high alumina cement.

Smart materials and their applications:-

Classification-(piezoelectric materials-quartz, Shape memory material (SMA-Nitinol), Thermo responsive materials, magneto rheological materials-Examples.

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants-mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010.
- 2. Engineering Chemistry by Rama Devi, and Rath, Cengage learning, Second edition 2022.
- 3. Textbook of Engineering Chemistry by Jaya Shree Anjireddy, Wiley Publications, 2022.
- 4. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.

5.

REFERENCE BOOKS:

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi(2011)

24X0501:Problem Solving Using C and C++

IB.Tech.I–Sem. L T P C

3 0 0 3

Course Overview:

The Course Provides good foundation in procedural oriented and object- oriented programming concepts. It provides overview on basic building blocks of procedural oriented concepts like arrays, pointers, structures, strings. It comprises object-oriented concepts such as information hiding, encapsulation, inheritance and polymorphism. C programming is used in operating systems, embedded devices, OS kernels, drivers, IoT applications. C++ is widely used for creating graphics-heavy software, game engines, VR applications, and web browsers.

Prerequisites: Nil

Course Objectives: The students will try to learn

- Using of structured programming approach in solving problems
- How to use arrays ,pointers, strings and structures in solving problems
- Defining of structures in C and classes in C++
- Importance of inheritance in object-oriented programming
- Handling of exceptions in programs

Course Outcomes: After successful completion of the course, students should be able to

- Develop programs using Control statements and Repetitive statements
- Modularize the code with functions so that they can be reused
- Learn about Object oriented concepts
- Design programs by using Inheritance concepts
- Implement polymorphism and Exception Handling

Module-I: Introduction to programming

[10]

Introduction Procedure Oriented and Object-Oriented Programming. Algorithm, Flowchart, Pseudo code. Creating and Running of C Program. Structure of C program – C character set, C Tokens: Constants, Variables, Keywords, Identifiers, C data types, C operators. Standard I/O in C (scanf, printf), Conditional Control statements (if and Switch) Statements. Repetitive statements: While, Do While and For Loops - Use of Break and Continue Statements.

Module-II: Functions, Arrays, Strings and Pointers

[12]

Arrays:Introduction,Declaration,CreatingandAccessingofOne-Dimensional Arrays, Two-Dimensional Arrays.

StringsandPointers:Introductiontostrings,stringhandlingfunctions,Arraysof strings, Introduction to pointers, Dynamic Memory allocation.

Functions: Defining Functions – User Defined Functions, Storage Classes, passing parameters: CallByValue, CallByReference, Recursion, Command-line Arguments.

Module-III: Structures and Classes

[8]

Structures: Defining structures, initializing structures, unions, Array of structures OOPS Concepts: Class, Object, Abstraction, Encapsulation, Inheritance and Polymorphism.

C++ Classes and Data Abstraction: Class definition, Class structure, Class objects, Class scope, this pointer, Friends to a class, Static class members, Constant member functions, Constructors and Destructors, Dynamic creation and destruction of objects, Data abstraction.

Module-IV: Inheritance

[7]

Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes, Access to the base class members, Base and Derived class construction, Destructors, Virtual base class.

Module–V: Polymorphism and Exception Handling

[8]

Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Abstract classes, Implications of polymorphic use of classes, Virtual destructors.

Exception handling: Try, throw and catch.

TEXTBOOKS:

- 1. Forouzan B.A&RichardF.Gilberg,AStructuredProgrammingApproach using C,3rd Edition(2013), Cengage Learning.
- 2. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Designin C 7th Edition, Pearson
- 3. ANSlandTurboC++byAshokeN.Kamthane,PearsonEducation
- 4. RobertLaforeC++

REFERENCES:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. E.Balagurusamy, Computerfundamentalsand C, 2nd Edition, McGraw-Hill
- 3. YashavantKanetkar,LetUsC,18thEdition,BPB
- 4. E.Balagurusamy, Object Oriented Programming using C++,2ndEdition, McGraw-Hill

(24X0201) Principles of Electrical and Electronics Engineering

(Common to CSE,CSM and CSD)

B.Tech I Year I Sem LTPC 3 00 3

COURSE OVERVIEW:

This Course provides the essential principles and theories Important in various aspects such as practical applications in daily life like household appliances, lighting systems, and personal electronics and industry use and technology.

It covers essential principles and concepts related to electrical and electronics systems promoting critical thinking, problem-solving, and analytical skills. It provides overview on basic definitions of electrical and electronics engineering, DC and AC circuits and theorems. It also gives knowledge about characteristics and applications of electronics devices.

Prerequisite: NIL

COURSE OBJECTIVES: The students will be able

- To analyze and solve electric circuits.
- To provide an understanding of basics in Electrical circuits and identify the types of electrical machines for a given application.
- To analyze the LT switchgear components
- To explain the characteristics of Electronics devices.

COURSE OUTCOMES: After successful completion of the course, students should be able to

- Analyze DC Electrical circuits to compute and measure the parameters.
- Analyze AC Electrical circuits with phasor representations
- Comprehend the working principles of Electrical Machines.
- Comprehend the components of LT Switchgear.
- Identify and test various characteristics of electronics devices.

MODULE -I

DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL &KCL, analysis of simple circuits with dc excitation, Superposition theorem, Norton's Theorem and Thevenin's Theorem.

MODULE - II

AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three-phase balanced circuits, voltage and current relations in star and delta connections.

MODULE -III

Transformers: Construction and working principle of Single-phase transformer, equivalent circuit, losses in transformers and efficiency.

DC Machines: Construction and working principle of DC generators, EMF equation, working principle of DC motors and Torque equation.

MODULE -IV

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of wires, cables and earthing.

Batteries: Types of batteries, important characteristics for batteries, elementary calculations for energy consumption, power factor improvement and battery backup.

MODULE-V

PN junction Diode: Volt-Ampere characteristics, applications, Static and dynamic resistances

Zener Diode: Volt-Ampere characteristics and it's applications.

Rectifiers: Half wave Rectifier, full wave rectifier, Bridge Rectifier-Ripple factor, efficiency and peak inverse voltage.

Text Books:

- 1. Basic Electrical Engineering By M.S. Naidu and S. Kamakshaiah TMH.
- 2. Basic Electrical Engineering –By T.K. Nagasarkar and M.S. Sukhija Oxford University Press.
- 3. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition.
- 4. Integrated Electronics- Jacob Millman, C. Halkies, C.D.Parikh, Tata Mc-Graw Hill, 2009.

Reference Books:

- 1. Theory and Problems of Basic Electrical Engineering by D.P. Kothari& I.J. Nagrath PHI.
- 2. Principles of Electrical Engineering by V. K Mehta, S.Chand Publications.
- 3. Essentials of Electrical and Computer Engineering by David V. Kerns, JR. J. David Irwin Pearson.
- 4. Electronic Devices and Circuits-K. Satya Prasad, VGS Book Links.
- 5. Electronic Devices and Circuits Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, Second Edition
- 6. Electronic Devices and Circuits Bell, Oxford.

24X0072: ENGINEERING CHEMISTRY LAB

B.Tech. I Year. I Sem

LTPC 0021

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry methods.
- Students will learn to prepare polymers such as Bakelite and Thiokol rubber in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water
- Able to perform methods such as conductometry, potentiometry and in order to find out the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and Thiokol rubber.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

I. Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.

II. Conductometry: 1. Estimation of the concentration of an strong acid by Conductometry.

III.Potentiometry: Estimation of the amount of Fe⁺² by Potentiomentry.

IV. Dichrometry: Determination of Ferrous ion by Dichrometry

V. Preparations:

1. Preparation of Thiokol rubber

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.

VII.Preparation of Hand sanitizer(Iso propyl alcohol)

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

REFERENCE BOOKS:

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

2410371: COMPUTER AIDED ENGINEERING GRAPHICS (Common to All Branches)

B.Tech I Year I Semester

L T P C 1 0 4 3

Course Overview:

Engineering Graphics is a foundational course designed to introduce first-year engineering students to the principles and practices of technical drawing and computer-aided design (CAD). This course covers essential topics such as geometric construction, orthographic projection, isometric drawing, lettering and dimensioning. Students will develop skills to create and interpret engineering drawings and gain proficiency in using CAD software for engineering applications.

Prerequisite: NIL

Course Objective: The students will be able

- 1. To understand the importance of engineering graphics in the engineering design process.
- 2. To apply principles of dimensioning and lettering in engineering drawings
- 3. To develop the ability to create and interpret technical drawings.
- 4. To master geometric constructions and projections.
- 5. To gain proficiency in computer-aided design (CAD) software.

Course Outcomes: Upon successful completion of this course, students will be able to:

- 1. Explain the role of engineering graphics in the engineering design and manufacturing process.
- 2. Understand the fundamental concepts of AutoCAD.
- 3. Perform basic geometric constructions and create accurate technical drawings.
- 4. Develop skills to create 2D and 3D drawings.
- 5. Use CAD software to create, modify, and manage engineering drawings.

Module-I: Introduction to Engineering Graphics: [12]

The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line, The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.

Module-II: Conic Sections and Engineering Curves

[10]

Construction of Ellipse, Parabola, Hyperbola (General Method Only) Engineering Curves: Cycloids, Epicycloid and Hypocycloid

Module -III: Orthographic Projections

[12]

Introduction to Projections: Assumptions, Principles and Different angles of projections.

Projections of Points: Located in all Quadrants

Projections of Lines: Parallel, Perpendicular, Inclined to one plane.

Module -IV: Projections of Planes and Projection of Solids [10]

Projections of Planes: Introduction to planes, Regular lamina- Orientations- Surface parallel to HP, Surface parallel to VP, Inclined to HP, Inclined to VP.

Projections of Solids: Introduction to solids, Right Regular Solids- Orientations- Axis perpendicular to HP, Axis perpendicular to VP, Axis inclined to HP, Axis inclined to VP.

Module –V: Isometric Drawing and Conversions

[14]

Principles of Isometric projections, Isometric View and Isometric Scale, Isometric view of: Planes and Solids, Conversion: Isometric to Orthographic and Vice Versa

Text Books:

- 1. "Engineering Drawing", N.D. Bhatt, Charotar Publishing House Pvt. Ltd, 53rd Edition, 2014, ISBN: 978-9380358173
- 2. "Textbook of Engineering Drawing", K. Venkata Reddy, BS Publications, Revised Edition, 2013, ISBN: 978-9381075994
- 3. "Engineering Graphics", K.R. Gopalakrishna, Subhas Stores, 32nd Edition, 2014, ISBN: 978-9353460206
- 4. "Engineering Drawing and Computer Graphics", M B Shah & C. Rana, Pearson Edition 2010.

Reference Books:

- 1. "A Textbook of Engineering Drawing", R.K. Dhawan, S. Chand Publishing, Revised Edition, 2012, ISBN: 978-8121914311
- 2. "AutoCAD 2024: A Problem-Solving Approach, Basic and Intermediate", Sham Tickoo, CADCIM Technologies, 1st Edition, 2023, ISBN: 978-1640571577
- 3. "Engineering Drawing and Graphics Using AutoCAD", T. Jeyapoovan, Vikas Publishing House 2nd Edition, 2015, ISBN: 978-9325982417

(24X0271) Principles of Electrical and Electronics Engineering Lab

(Common to CSE, CSM and CSD)

B.Tech. I Year, I Sem

LTPC 0021

COURSE OVERVIEW:

A element of electrical and electronics engineering laboratory offers a hands-on setting and simulation of basic circuits where students can apply the theoretical concepts and software packages learned in their electrical and electronics engineering courses. These labs are crucial for grasping the practical aspects of circuit design, electronics, electrical systems.

Pre-requisite: NIL

COURSE OBJECTIVES:

- To analyze a given network by applying various electrical and electronics laws and network theorems
- To know the response of electrical circuits for different excitations.
- To calculate, measure and know the relation between basic electrical parameters.
- To understand basic block sets of different simulation platform used in electrical/electronic circuit design.
- To understand use and coding in different software tools used in electrical/electronic circuit design.
- To understand the simulation of electric machines/circuits for performance analysis.

COURSE OUTCOMES: Upon the completion of laboratory practical course, the student will be able to

- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters.
- Get an exposure to basic electronics devices and laws and Develop knowledge of software packages to model and program electrical and electronics systems.
- Model different electrical and electronic systems and analyze the results by used software packages for simulation in laboratory experimentation.

List of experiments / demonstrations:

PART A: Conduct All the experiments

- 1. Verification of Ohms Law.
- 2. Verification of KVL and KCL.
- 3. Verification of super position theorem.
- 4. Verification of Norton's and Thevenin's Theorem.
- 5. Resonance in Series RLC circuit.

PARTB: Simulate any five from following experiments using Multisim / MATLAB Software:

- 1. Simulate V-I Characteristics of PN Junction Diode in a)Forward Bias and b)Reverse Bias.
- 2. Simulate V-I Characteristics of Zener Diode and Observe Zener as a Voltage Regulator.
- 3. Simulate Characteristics of Half Wave Rectifier
- 4. Simulate Characteristics of Full Wave Rectifier.
- 5. Simulate the Performance Characteristics of a DC Shunt Motor.

- 6. Simulate the load test on single phase transformer to find out efficiency
- 7. Simulate Kirchhoff's voltage law using basic series DC Circuit 4 with resistors. Where Vs = 6 V, $R1 = 100 \Omega$, $R2 = 220 \Omega$, $R3 = 1k \Omega$
- 8. Simulate Kirchhoff's current law using basic parallel DC Circuits 5 with resistors. Where $V_s = 6$ V_s , $R_s = 100 \Omega$, $R_s = 220 \Omega$, $R_s = 11 \Omega$

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

- 1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker,"Basic Electrical Engineering", S. Chand, 2 nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.

24X0571:Problem Solving Using C and C++ Laboratory

B.Tech. I Year. I Sem

L T P C

0 0 2 1

Course Overview:

The Course Provides good foundation in procedural oriented and object-oriented programming concepts. It provides overview on basic building blocks of procedural oriented concepts like arrays, pointers, structures, strings. It comprises object-oriented concepts such as information hiding, encapsulation, inheritance and polymorphism. C programming is used in operating systems, embedded devices, OS kernels, drivers, IoT applications. C++ is widely used for creating graphics- heavy software, game engines, VR applications, and web browsers.

Prerequisites: Nil

Course Objectives: The students will try to learn

- Using of structured programming approach in solving problems
- How to use arrays, pointers, strings and structures in solving problems
- Defining of structures in C and classes in C++
- Importance of inheritance in object-oriented programming
- Handling of exceptions in programs

Course Outcomes: After successful completion of the course, students should be able to

- Develop programs using Control statements and Repetitive statements
- Modularize the code with functions so that they can be reused
- Learn about Object oriented concepts
- Design programs by using Inheritance concepts
- Implement polymorphism and Exception Handling

Week1: Algorithm and Flowchart

- 1. You are designing a flowchart and algorithm for a distance and speed calculator. The flowchart should prompt the user to input the distance traveled and the time taken and calculate the speed using the formula: **Speed = Distance / Time**.
- 2. You are developing an algorithm and flow chart for a circle area calculator. The flowchart should prompt the user to input the radius of a circle and calculate the area using the formula: $Area = \pi r^2$
- 3. You are designing an algorithm and flowchart for a fuel efficiency calculator in a car rental app. The flowchart should prompt the user to input the distance traveled and the amount of fuel consumed and calculate the fuel efficiency in miles per gallon (MPG) using the formula MPG = Distance / Fuel Consumption.
- 4. You are developing an algorithm and flowchart for a discount calculator in an online shopping app. The flowchart should prompt the user to input the original price and the discount percentage and calculate the discounted price using the formula: **Discounted Price = Original Price (Original Price * Discount Percentage /100).**
- 5. You are developing a flowchart and algorithm for a monthly budget tracker. The flowchart should prompt the user to input their income and expenses and calculate the total savings using the formula **Total Savings = Income Total Expenses**.

- 6. You are designing a flowchart for a loan amortization calculator. The flowchart should prompt the user to input the loan amount, interest rate, and duration, and calculate the monthly payment using the formula Monthly Payment = (Loan Amount * Interest Rate * (1+ Interest Rate)^{Duration}) / ((1 + Interest Rate)^{Duration-1}).
- 7. You are developing a flowchart and algorithm for a construction materials calculator. The Flow chart should guide the user through the process of inputting the dimensions of a room, including the length, width, and height. The goal is to calculate the surface area of the room using the provided formula:

 Surface Area=2*(Length*Width+Length *Height+Width* Height).
- 8. Developaflowchartandanalgorithmtoconvertagiventimeinhoursandminutesto minutes only. Prompt the user to input the time in hours and minutes and display the converted time in minutes.

Skill Oriented Exercise

- 9. Farmer Thimmayya bought some mules at Rs. 50 each, sheep at Rs. 40 each, goats at Rs. 25each, and pigsatRs. 10each. The average price of the animal sperheadworked to Rs. 30. What is the minimum number of animals of each kind did he buy?
- 10. **AMatterofRupeesandPaisa:** IhavemoneypouchcontainingRs.700. There are equal number of 25 paise coins, 50 paise coins and 1 rupee coins. How many of each are there.
- 11. Developanalgorithmandflowchartthatpromptstheusertoinputtheinitialvelocity, acceleration, and time. Calculate and display the final velocity using the formula Final Velocity = Initial Velocity + (Acceleration * Time).
- 12. Develop an algorithm and flowchart that prompts the user to input the lengths of the three sides of a triangle. Calculate and display the area of the triangle using Heron's formula: $Area = \sqrt{(s*(s-Side1)*(s-Side2)*(s-Side3))}$, where s=(Side1+Side2+Side3)/2.

Week2: Algorithm and Flowchart

- 1. ABC Company wants to calculate the monthly salary for its employees based on various components such as basic pay, DA, HRA, and deductions for taxes and provident fund. The company follows the following rules for salary calculation:
- The basic pay is a fixed amount each employee receives.
- DAiscalculatedas20 percentage of the basic pay.
- HRA is calculated as 10percentageofthebasicpay.
- The gross salary is the sum of the basic pay, DA, and HRA.
- The net salary is the gross salary minus deductions for taxes and provident fund. Develop an algorithm and flow chart to calculate the gross and net salary of the employee. Include the necessary steps to calculate the net salary.
- 2. Sarah, a dedicated student, wants to calculate her average grade for a semester. She has received marks in four different subjects and seeks assistance in creating an algorithm to determine her average grade based on these marks. Develop an algorithm and flowchart to help Sarah calculate her average grade for the semester using the marks obtained in these four subjects. Ensure that the algorithm includes the necessary steps to compute the average grade accurately.

- 3. John is a programmer who wants to convert a given temperature in Celsius to Fahrenheit. Help John in developing an algorithm and flowchart to perform this conversion. Design an algorithm for John to convert a given temperature in Celsius to Fahrenheit. Provide step-by-step instructions for performing the conversion.
- 4. **The Tall Men Next Door:** Next door to me live four brothers of different heights. Their average height is 74 inches, and the difference in height among the first three men is two inches. The difference between the third and the fourth man is six inches. Can you tell how tall each brother is?
- 5. **Driving Through the Country:** I decided to travel through the countryleisurely and on the first day I did only 7 miles. On the last day I did 51 miles, increasing my journey by 4 miles per day. How many days did I travel and how far?
- 6. There is a beautiful pond in a park, filled with clear water. The park management wants to monitor the water level in the pond regularly to ensure it remains at an optimal level. They have asked you to create an algorithm to help them with this task. Develop an algorithm and flow chart to monitor the water level in the pond and notify the park management if it falls below a certain threshold. (Note: You can assume that the input for the current water level and threshold level is obtained from a monitoring device or sensor).
- 7. If a participant can make one submission every 45 seconds, and a contest lasts for Y minutes, create an algorithm and flowchart to find the maximum number of submissions that the participant can make during the contest? Assume the participant is allowed to make submissions until the last second of the contest.

Skill Oriented Exercise

- 8. Michael wants to find the largest number among a set of given numbers. Help Michael write an algorithm to determine the largest number from the given inputs. Create an algorithm and flowchart for Michael to find the largest number among a set of given inputs. Provide step-by-step instructions to identify the largest number.
- 9. A construction worker needs to paint the exterior walls of a rectangular building. The dimensions of the walls are L meters in length, H meters in height, and W meters in width. If the cost of painting is Rs. 20 per square meter, what will be the total cost of painting the walls? Prepare an algorithm and flowchart to calculate the total cost of painting.
- 10. An ice cream vendor brings 'i' litre of ice cream to a fair. Each cone requires 0.25 liters of ice cream. If the vendor sells 80 cones, Develop an algorithm and flowchart to find the number of liters of ice cream left with the vendor.
- 11. Amanda is planning a party and wants to determine the total number of guests attending. Assist Amanda by writing an algorithm to calculate the total number of guests based on the number of adults and children invited. Create an algorithm and flowchart for Amanda to calculate the total number of guests attending her party, considering the number of adults and children invited. Include the necessary steps to calculate the total number of guests.

Week: 3 Data Types, Console I/O, Operators Storage Classes

- 1. You are working as a financial analyst at a bank. As part of your job, you need to calculate the maturity amount for fixed deposits (FD) based on the principal amount, interest rate, and duration. For that help me to write a C program that takes the principal amount, interest rate, and duration(in years)as input from the user. Calculate and display the maturity amount using the simple interest formula: Maturity Amount = Principal + (Principal * Interest Rate * Duration).
- 2. Jenny, a budding mathematician, was studying the concept of area and perimeter. She was given a rectangular garden with a known length and width. Jenny wondered if she could find the area without knowing the width. Can you help Jenny derive a formula to calculate the area of a rectangle using only the length and perimeter?
- **3.** Develop a C program that computes the hypotenuse of a right-angled triangle given the lengths of its two perpendicular sides. Prompt the user to enter the lengths and displaythe result. (Pythagorean theorem:Hypotenuse² = $Side1^2 + Side2^2$)
- **4.** Once upon a time, there was a mathematician named Alex. Alex loved solving mathematical problems and puzzles. One day, Alex came across an ancient scroll that contained a secret formula to calculate the sum of the first n natural numbers. The scroll mentioned that by using the formula, one could find the sum of any given number of natural numbers without having to manually add them up. Alex was intrigued and decided to test the formula. Can you help Alex implement a C program that uses the formula to calculate the sum of the first n natural numbers?

Instructions:

Write a C program that takes an input integer n from the user and calculates the sum of the first n natural numbers using the formula: $\mathbf{sum} = (\mathbf{n}^*(\mathbf{n}+1))/2$

5. Once upon a time in a small town, there were two friends, Kavi and Jei, who were fascinated by the concept of slopes in mathematics. They loved exploring the hills and valleys around their town and wondered how they could calculate the slope of any given landscape. One sunny day, while hiking up a hill, Kavi and Jei discovered an ancient map that had the secret to finding the slope of a line between two points. The map indicated that by using the coordinates of two points, they could determine the slope of the line connecting them. Excited about their discovery, Kavi and Jei decided to create a C program that could calculate the slope for any two points. They wanted to share their program with others so that everyone could explore the slopes of various land scapes. Can you help Kavi and Jei bring their idea to life by implementing a C program that calculates the slope of a line?

Instructions:

Write a C program that prompts the user to enter the coordinates of two points:(x1,y1)and (x2, y2). The program should then

Calculate ,the slope of the line connecting these points using the formula: slope=(y2-y1)/(x2-x1)

Finally, the program should display the calculated slope to the user.

6. Ravi and Kavi are on an exciting treasure hunt adventure, following a map with hidden treasures located at different coordinates. They want to calculate the distance between two treasures to determine how far apart they are. Can you help them by writing a C program that performs this calculation?

Instructions:

Write a C program that prompts the user to enter the coordinates of two treasures: Treasure A and Treasure B. The coordinates should be in the form (x, y). Calculate the distance between the treasures using the distance formula:

distance = sqrt $((x2 - x1)^2 + (y2 - y1)^2)$ Finally ,output a message indicating how far a part the treasures are.

7. Imagine a scenario where there is a coconut tree with multiple coconuts hanging from it. There is a person standing at a distance of "D" meters away from the tree. The coconuts are positioned at a height of "H" meters from the ground. Could you please help write a C program that calculates the angle at which the person should aim in order to hit the coconuts? (Hint: you can use the inverse tangent function (atan() in C) to determine the angle based on the ratio of the height of the coconuts to the distance from the tree.)

Skill Oriented Exercise

- 8. In a faraway kingdom, two treasure hunters named Alex and Bella embarked on a daring quest to find valuable treasures. While exploring a mysterious cave, they stumbled upon two treasure chests, each containing a unique gemstone. Curiosity took over, and they decided to swap the gemstones inside the chests. However, a magical enchantment prevented them from directly swapping the gemstones. To fulfill their quest and restore the treasures to their rightful chests, Alex and Bella realized they could use a third variable and arithmetic operations. Can you help them by writing a C program that takes the values of the gemstones as input, and swap their values.
- 9. Emily, a young architect, was working on designing a cylindrical water tank for a new building. As she was finalizing the plans, she needed to calculate the surface area of the cylinder to determine the amount of material required for its construction. However, she was unsure of the exact formula and the steps involved in the calculation. Can you help Emily by writing a C program that assists her in calculating the surface area of a cylinder?(Surface Area = $2\pi r^2 + 2\pi rh$)
 - 10. Hemanthisanarchitectwhowantstodesignagardenwithabeautifulpolygon-shaped fountain at its center. He needs to calculate the area of the polygon so that he can determine the appropriate size for the fountain. Help Hemanth by writing a C program that calculates the area of a regular polygon when given the number of sides and the length of each side.

Area=(num Sides* side Length*side Length)/ $(4 * tan(\pi / num Sides))$

- 11. Prathima loves ice cream cones and wants to decorate the surface of her favorite ice cream cone with colorful stickers. To know how many stickers she needs, she wants to calculate the surface area of the cone. Help Prathima by writing a C program that calculates the surface area of a cone when given the radius of the base and the slant height, (SurfaceArea= $\pi^*r^*(r+1)$)
- **12. RIGHT FOOT FORWARD:** A short man takes three steps to a tall man's two steps. They both start out on the left foot. How many steps do they have to take before they are both stepping out on the right foot together?

Week: 4DataTypes, Console I/O, Operators Storage Classes

```
PREDICTTHEOUTPUT:
  1. #include<stdio.h>
                                                               Output:
       int main()
       inta=5;floatb=3.5;
       intresult=a+b;printf("%d\n",result);return0;
 2. #include<stdio.h>
                                                              Output:
       intmain(){inta=10;intb=20;
       intresult=a*b/4%3;printf("%d\n",result);return0;
 3. #include<stdio.h>
                                                               Output:
       intmain(){inta=15;intb= 10;
       intresult=(a>b)&&(b!=0);printf("%d\n", result); return0;
       }
 4. #include<stdio.h>
                                                                Output:
       intmain(){inta=10;intb= 5;
       ||(a=10);printf("%d\n",result);
       return0;
       }
5. #include<stdio.h>
                                                               Output:
       int main(){
       int x=3,y=2;
       intresult=x*y-y/x\%y;printf("%d\n", result);return 0;
6. #include<stdio.h>
                                                                         Output:
       intmain(){intx=5;
        int *ptr1 = &x;
       int**ptr2=&ptr1;printf("%d\n",**ptr2);return0;
       }
  7. #include<stdio.h>
                                                                        Output:
       int main(){intx=5;
       int*ptr1,*ptr2;ptr1 = &x;
       ptr2=ptr1;printf("%d\n",*ptr2);return0;
 8. #include<stdio.h>
                                                                        Output:
       int main(){intx=51;
       int*ptr=&x; printf("%d\n",*ptr);x=15;
        printf("%d\n",*ptr); return 0;
        }
 9. #include<stdio.h>
                                                                        Output:
       intmain(){float*ptr;
       printf("Sizeofptr:%lubytes\n",sizeof(ptr));return0;
```

```
10. #include<stdio.h>
                                                                             Output:
         intmain(){doublearr[5];
         printf("Sizeofarr:%lubytes\n",sizeof(arr));return0;
11. #include<stdio.h>
                                                                            Output:
         intmain(){
         intx=10;if(x>5){
         printf("Hello\n");
         printf("Goodbye\n");return0;
         Skill Oriented Exercise
         Find the syntax error, logical errors if any in the following code snippet:
        1. #include<stdio.h>
                                                                     Errors:
            int main(){
            printf("Hello,KLUFamily!\n")return0;
        2. #Include<stdio.h>
                                                                     Errors:
            intmain(){
            int x = 5, y = 0;
            intresult=x/y;printf("Theresultis:%d\n",result);
            return0;
            }
          3.#include<stdio.h>
                                                                     Errors:
            intmain(){intx=5;int*ptr;
            *ptr=&x;printf("%d\n",*ptr);return0;
            }
          4.#include<stdio.h>
                                                                     Errors:
            intmain()\{intx=-5;if(x)\}
            printf("xisnotzero\n");
            }else
            printf("xiszero\n";)
            return0;
         Week5:If else and Ternary Operator
```

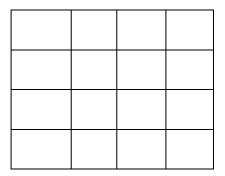
- Chef and Chefina are playing with dice. In one turn, both of them roll their dice at once.
 They consider a turn to be good if the sum of the numbers on their dice is greater than
 6. Given that in a particular turn Chef and Chefinagot Xand Yon their respective dice, find whether the turn was good.
- 2. Chef has been working hard to compete in MasterChef. He is ranked *X* out of all contestants. However, only 10 contestants would be selected for the finals. Check whether Chef made it to the top 10 or not?

- 3. Apple considers any I Phone with a battery health of 80% or above, to be in *optimal* condition. Given that your iPhone has X% battery health, find whether it is in *optimal* condition.
- 4. In a classic chase, Tom is running after Jerry as Jerry has eaten Tom's favorite food. Jerry isrunningataspeedof *X* metres per second. Determine whether Tom will be able to catch Jerry.

 Note that initially Jerry is not at the same position as Tom.
- **5.** Chef has started studying for the upcoming test. The textbookhas *N*pages in total.Chef wants to read at most *X* pages a day for *Y* days. Find out whether it is possible for Chef to complete the whole book.
- **6.** Chefhasfinallygotthechanceofhislifetimetodriveinthe *F*1 tournament. But, there is one problem. Chefdidnotknowaboutthe 107% rule and now he is worried whether he will be allowed to race in the main event or not.

 Given the fastest finish time as *X* seconds and Chef's finish time as *Y* seconds, determine whether Chef will be allowed to race in the main event or not.

 Note that, Chef will only be allowed to race if his finish time is within **107%** of the fastest finish time.


Skill Oriented Exercise

- 7. Chefwantstohostapartywithatotalof*N*people.However,thepartyhallhasa capacity of *X* people. Find whether Chef can host the party.
- 8. Chef has to attend an exam that starts in *X* minutes, but of course, watching shows takes priority. Everyepisodeofthe showthat Chefiswatching, is 24 minutes long. If he starts watching a new episode now, will he finish watching it **strictly before** the exam starts?
- 9. Chef has to travel to another place. For this, hecanavail anyoneoftwocab services.
 - The first cab service charges *X*rupees.
 - The second cab service charges *Y*rupees. Chef wants to spend the **minimum** amount of money. Which cab service should Chef take?
- 10. Chef categorizes an Instagram account as *spam*, if, the *following* count of the account is more than 10 times the count of *followers*.

 Giventhe *following* and *follower* count of an account as *X* and *Y* respectively, find whether it is a *spam* account.
 - 11. ChefiswatchingTV.ThecurrentvolumeoftheTVisX.Pressingthevolumeupbuttonofthe TVremoteincreasesthevolumeby11whilepressingthevolumedownbuttondecreasesthe volumeby11.ChefwantstochangethevolumefromXtoY.Findtheminimumnumberof button presses required to do so.
 - 12. Cities on a map are connected by a number of roads. The number of roads between each cityisinanarrayandcity0isthestartinglocation. The number of roads from city0tocity1 isthefirstvalue in the array, from city1tocity2inthese cond, and so on. How many paths are therefrom city0tothelast cityinthelist, modulo 1234567?

13. Square within Square

 $Write a Cprogram to determine the number of squares in the given illustration\ below$

Week6: Loops, Increment and Decrement operator

1. Sum of digits of five digit number.

Given the five digit number print the sum of its digits.

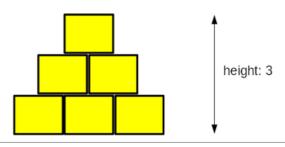
Input

10564

Output

16

- 2. Write a program that takes two integers as input, start and end. The program should use for loop to iterate from start to end (both inclusive).
- 3. WriteaCprogramthattakestheinputformultipletestcases.Foreachtestcase,the program should receive two integers, E and K, representing the energyat the lowest trophiclevelandtheenergyreductionfactor,respectively.Theprogramshouldcalculate and output the maximum length of the food chain for each test case.
- 4. Write a program in C that takes an integer, n, as input, representing the number of multiplicationtablestobegenerated. The programs hould output the multiplication table for each number from 1 to n, up to a multiple of 10.
- 5. Alice,Bob,andCharliehavedifferentpreferencesfornumbers.Alicelikesnumbersthat are even and multiples of 7, while Bob prefers numbers that are odd and multiples of 9. They have found a number, A, and the task is to determine who takes it home.
 - Write a program that takes an integer, A, as input and outputs the person who takes the number home based on their preferences. If A is an even multiple of 7, Alice takes it home. If A is an odd multiple of 9, Bob takes it home. If neither Alice nor Bob likes the number, Charlie takes it home.
- 6. Chef owns a car that can run 15 kilometers using 1 litre of petrol. He wants to attend a programmingcampatDAIICT, which is a distance of Ykilometers from his house. Chef currently has X litres of petrol in his car. The task is to determine whether Chef can attend the event at DAIICT and return to his home with the given amount of petrol. Write a program that takes two integers, X and Y, as input and outputs whether Chef can complete the round trip with the available petrol.


Skill Oriented Exercise

7. Listen to this story: a boy and his father, a computer programmer, are playing with wooden blocks. They are building a pyramid. Their pyramid is a bit weird, as it is actually a pyramid-shaped wall - it's flat. The pyramid is stacked according to one simple principle: each lower layer contains one block more than the layer above. The figure illustrates the rule used by the builders:

Note: the height is measured by the number of fully completed layers —if the builders don't have a sufficient number of blocks and cannot complete the next layer, they finish their work immediately.

Sample input: 6

Expected output: The height of the pyramid: 3 Sample input:1000

blocks: 6

Expected output: The height of the pyramid:44

8. The Special Number

There is a number whose double is greater than its half by 45. Can you find this number?

- 9. Chef is a student at a university, and the university has a requirement that students must be present foratleast75% of the working days in a sequence about meeting the attendance requirement. The information about the days Chef has attended or been absent is given as a sequence of N bits: B1, B2,..., BN. If Bi =0, it means Chef was absent on the ith day, and if Bi=1, it means Chef was present on that day. The task is to determine if Chef can pass the attendance requirement by the end of the semester. Write a program that takes an integer N as input, followed by a sequence of Nbits, and out puts whether Chef can hope to pass the attendance requirement or not.
- 10. There are N piles where the ith pile consists of Ai stones. Chef and Chef in a are playing a game taking alternate turns with Chef starting first. In his/her turn, a player can choose any non-empty pile and remove exactly 1 stone from it. The game ends when exactly 1 pile becomes empty. The player who made the last move wins. Determine the winner if both players play optimally.

- 11. Write the c program for following pattern
- 12. Write a program to obtain a number N and increment its value by 1 ift he number is divisible by 4

otherwise decrement its value by 1.

Week7: Arrays

- 1. Given a large integer represented as an integer array digits, where each digits[i]is the i-th digit of the integer, ordered from most significant to least significant in left-to-right order (without any leading zeros), implement a program to increment the large integer by one and return the resulting array of digits.
- 2. Chef has set a target to solve at least 10 problems every week for a duration of 4 weeks. The input consists of four integers representing the number of problems Chef solved in each week (P1, P2, P3, and P4). The task is to determine the number of weeks in which Chefmet his target. The output should be a single integer indicating the count of weeks where Chef solved at least 10 problems.
- 3. Code Chef recently revamped its practice page to make it easier for users to identify the next problems they should solve by introducing some new features: Recent Contest Problems contains only problems from the last 2 contests Separate Un-Attempted, Attempted, and All tabs.

Problem Difficulty Rating-there commended drop down menu has various difficulty ranges so that you can attempt the problems most suited to your experience Popular Topics and Tags. Like most users, Chef didn't know that he could add problems to a personal to-do list by clicking on the magic'+'symbol on the top-right of each problem page. But once he found out about it , he went crazy and added loads of problems to his to-do list without looking at their difficulty rating. Chef is a beginner and should ideally try and solve only problems with difficulty rating strictly less than 1000. Given a list of difficulty ratings for problems in the Chef's to-dolist, please helphimidentify how many of those problems Chefshould remove from his to-dolist, so that he is only left with problems of difficulty rating less than 1000.

- 4. You are given an array price where prices[i] is the price of a given stock on the ith day. You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock. Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.
- 5. Given a non-empty array of integer's nums, every element appears twice except for one. Find that single one. You must implement a solution with a linear runtime complexity and use only constant extra space.
- 6. Given an array nums of size n, return the majority element. The majority element is the element that appears more than $\lfloor n/2 \rfloor$ times. You may assume that the majority element always exists in the array.
- 7. Write a C program to calculate the factorial of small positive integers. The input consists of an integer 't' representing the number of test cases, followed by 't' lines containing a single integer 'n' $(1 \le n \le 100)$ for each test case. The output should display the factorial of 'n' on a

separate line for each input value of 'n'.

- 8. (Puzzle)On the Way to Market One morning.

 I was on my way to the marketandmetamanwhohad4wives.Eachofthewiveshad4 bags
 ,containing 4 dogsandeachdoghad4puppies.Taking all things into consideration how
 many were going to the market?
- 9. Vasyalikesthenumber239. Therefore, he considers a number pretty if its last digit 2,3 or 9. Vasya wants to watch the numbers between Land R(both inclusive), so he asked you to determine how many pretty numbers are in this range. Can you help him?
- 10. You are participating in a contest which has 11 problems (numbered 1 through 11). The first eight problems (i.e. problems 1,2,...,8) are scorable, while the last three problems (9,10 and 11) are non-scorable this means that any submissions you make on any of these problems do not affect your total score.

Your totals core is the sum of your best scores for all scorable problems. That is, for each scorable problem, youlookatthescoresofall submissions you made on that problem and take the maximum of these scores (or 0 if you didn't make any submissions on that problem); the total score is the sum of the maximum scores you took. You know the results of all submissions you made. Calculate your total score.

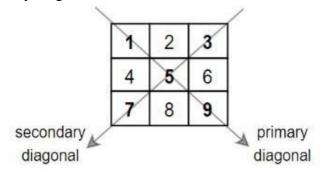
Skill Oriented Exercise

 ${\bf 11.}\ Write a Cprogram to help Joe and Lilly multiply two matrices, A and B. The program$

should take input for multiple test cases. For each test case, the program should read the dimensions and values of matrices A and B. If the multiplication is possible, the program should print the output matrix values. If the multiplication is not possible, the program should print "IMPOSSIBLE".

12. You are given an m x n integer matrix with the following two properties:

Each row is sorted in non-decreasing order. The first integer of each row is greater than the last integer of the previous row. Given an integer target, return true if target is in matrix or false other wise.


1	3	5	7
10	11	16	20
23	30	34	60

Input :matrix=[[1,3,5,7],[10,11,16,20],[23,30,34,60]],target=3

Output: true

13. You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the ith customer has in the jth bank. Return the wealth that the richest customer has A customer's wealth is the amount of money they have in all their bank accounts. The richest customer is the customer that has the maximum wealth.

14. Given a square matrix mat, return the sum of the matrix diagonals. Only include the sum of all the elements on the primary diagonal and all the elements on the secondary diagonal that are not part of the primary diagonal.

15. Writeaprogramtoperformmatrixmultiplication.IfMultiplicationcannotbedonefora given matrices then print "NOT POSSIBLE"

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} B = \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix}$$

Multiplication of two matrixes:

$$A * B = \begin{pmatrix} 1*5 + 2*8 & 1*6 + 2*9 & 1*7 + 2*10 \\ 3*5 + 4*8 & 3*6 + 4*9 & 3*7 + 4*10 \end{pmatrix}$$

$$A * B = \begin{pmatrix} 21 & 24 & 27 \\ 47 & 54 & 61 \end{pmatrix}$$

$$A * B = \begin{pmatrix} 21 & 24 & 27 \\ 47 & 54 & 61 \end{pmatrix}$$

Input:

- 1) Read the row & column sizeofmatrix 1
- 2) Readthematrix 1
- 3) Read the row & column sizeofmatrix 2
- 4) Readthematrix 2

Output:

Resultant Matrix.

Sample Input	Sample Output
22	710
12	1522
34	
22	
12	
34	

16. Given two sorted arrays num s1and num s2ofsizemandnrespectively,return the median of the two sorted arrays.

Input: nums1 = [1,3], nums2 = [2] Output: 2.00000 Explanation: merged array=[1,2,3] and median is 2.

17. Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

1	3	1		
1	5	1		
4	2	1		

Input: grid=[[1,3,1],[1,5,1],[4,2,1]]

Output:7

Explanation: Because the path $1 \rightarrow 3 \rightarrow 1 \rightarrow 1 \rightarrow 1$ minimizes the um.

18. Given an array nums of size n, return the majority element. The majority element is the element that appears more than [n/2] times. You may assume that the majority element always exists in the array.

Input: nums=[3,2,3]**Output:**3

19. Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

Input: nums=[1,3,5,6],target=5Output:2

20. Givenamxnmatrixgridwhichissortedinnon-increasingorderbothrow-wise and columnwise, return the number of negative numbers in grid.

```
Input: grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]
Output: 8
Explanation: There are 8 negatives number in the matrix.

Example 2:
    Input: grid = [[3,2],[1,0]]
    Output: 0
```

Week8: String Handling

- 1. Louise joined a social networking site to stay in touch with her friends. The signup page required her to input a *name* and a *password*. However, the password must be *strong*. The website considers a password to be *strong* if it satisfies the following criteria:
 - Its length is at least 6.
 - It contains at least one digit.
 - It contains at least one lower case English character.
 - It contains at least one upper case English character.
 - It contains at least one special character. The special characters are: @#\$%^&*()-+!

2. As pace explorer's ship crashed on Mars! They send a series of SOS messages to Earth for help.

Letters in some of the SOS messages are altered by cosmic radiation during transmission. Given the signal received by Earth as a string, determine how many letters of the SOS message have been changed by radiation.

s='SOSTOT'

Example

The original message was SOSSOS. Two of the message's characters were changed in transit.

Function Description

Complete the mars Exploration function in the editor below. mars Exploration has the following parameter (s): strings: the string as received on Earth

Returns

int: the number of letters changed during transmission

- 3. ChefhasastringSwithhim.Chefishappyifthestringcontainsacontiguoussubstring of length strictly greater than 2 in which all its characters are vowels.
 - Determine whether Chef is happy or not.
 - Note that, in english alphabet, vowels are a, e, i, o, and u.
- 4. Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.
- 5. Givenastringsconsistingofwordsandspaces,returnthelengthofthelast word in the string. A word is a maximal substring consisting of non-space characters only.
- 6. Given a string S, reverse only all the vowels in the string and return it. The vowelsare'a','e','i','o',and'u',andtheycanappearinbothlowerandupper cases, more than once.
- 7. You have been given a String S. You need to find and print whether this string is a palindrome or not. If yes, print "YES" (without quotes), else print "NO" (without quotes).

Skill Oriented Exercise

8. Jeff, Chef's younger brother, is learning to read and knows a subset of the Latin alphabet. Chef gave Jeff a book with N words to practice. Jeff can only read wordsthatconsistofthelettersheknows. The taskistodetermine which words Jeff can read based on the given letters and output "Yes" or "No" accordingly.

9. Timur loves code forces. That's why he has a string Shaving length 10made containing only lower case Latin letters. Timur wants to know how many indices string s differs from the string "codeforces".

Forexamplestrings="coolforsez"differsfrom"codeforces"in4indices,showninbold.

Up the Ladder

A man wants to reach window which is 40ft above from the ground. And the distance between the foot of the ladder and wall is 9 feet. How long should the ladder be?

- 10. Given two strings s and t, return true if t is an anagram of s, and false otherwise. An Anagramisawordorphraseformedbyrearrangingthelettersofadifferentword or phrase, typically using all the original letters exactly once. Given strings, find the first non-repeating character in it and return its index. If it does not exist, return -1.
- 11. A robot starts at the origin (0, 0) on a 2D plane. It is given a sequence of moves represented by the string "moves". Each move is represented by 'R' (right), 'L' (left), 'U' (up), or 'D' (down). The task is to determine if the robot returns to the origin after completing all the moves. The robot's direction is irrelevant, and all moves have the same magnitude. Return true if the robot ends up at the origin, and false otherwise.
- 12. Chandu is a bad student. Once his teacher asked him to print the reverse of a given string. He took three hours to solve it. The teacher got agitated at Chandu and asked you the same question. Can you solve it?
- 13. There is a string s of lowercase English letters that is repeated infinitely many times. Given an integer n find and print the number of letter a's in the first n letters ofthe infinite string.

Week9: Recursion

- 1. Given an integer n, return true if it is a power of three. Otherwise, return false. An integer n is a power of three, if there exists an integer x such that $n == 3^x$.
- 2. You are climbing a stair case. It takes n steps to reach the top. Each time you can either climb1or 2steps. In how many distinct ways can you climb to the top?
- 3. Given an integer n, return true if it is a power of four. Otherwise, return false. An integer n is a power of four, if there exists an integer x such that $n == 4^x$.
- 4. You are given an integer N. You need to print N! –the factorial of N.

Input The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows. The first and only line of each test case contains a single integer N.

Output For each test case print a single line containing a single integer *N*!

- 5. The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two precedingones, starting from 0 and 1
- 6. Kristenlovesplayingwithandcomparingnumbers. Shethinksthatifshetakestwodifferent positive numbers, the one whose digits sum to a larger number is *better* than the other. If the sum of digits is equal for both numbers, then she thinks the smaller number is *better*. For example, Kristen thinks that 13is better than 31and that12is better than 11 . Given an integer, n ,can you find the divisor of n that Kristin will consider to be the best?

- 7. A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. A divisor of an integer x is an integer that can divide x evenly. Given a n integer n, return true if n is a perfect number, other wise return false.
- 8. Given an integer num, repeatedly add ll its digits until the result has only one digit, and return it.
- 9. **Something for Profit:** A friend of mine bought a used pressure cooker for Rs. 60. She somehow did not find it useful and so when a friend of hers offered her Rs. 70 she sold it to her. However, she felt bad after selling it and decided to buy it back from her friend' by offering her Rs. 80. After having bought it once again she felt that she did not really need the cooker. So, she sold it at the auction forRs.90.Howmuchprofitdidshemake? Did she a tall make any profit?
- 10. Given a signed 32-bit integer x, return x with its digits reversed. If reversing x causes the value to go outside the signed 32-bit integer range $[-2^{31}, 2^{31} 1]$, then return 0.
- 11. Given an integer array num s, move all 0's to the end of it while maintaining the relative order of the non-zero elements.
- 12. Writeafunctionthattakesthebinaryrepresentationofanunsignedinteger and returns the number of '1' bits it has (also known as the Hamming weight).
- 13.Martha is interviewing at Subway. One of the rounds of the interview requires her to cut a bread of size l X b into smaller identical pieces such that each piece is a square having maximum possible side length with no leftover piece of bread.
 - 14. Given N two-dimensional points in space, determine whether they lie on some vertical or horizontal line.

If yes, print YES; otherwise, print NO.

Skill Oriented Exercise

PREDICTTHEOUTPUT

```
#include<stdio.h>voidfoo(intn){
if(n>0){printf("%d",n);foo(n-1);printf("%d",n);
}
}
intmain(){
foo(3);return0;
}
```

- 1. What is the output of the above program?
- 321123
- 321
- 123
- 123321

```
#include<stdio.h>intbar(intn){ if (n <= 0)
{ return 0;
}else{
returnn+bar(n-2);
}</pre>
```

```
}
int main(){
intresult=bar(7); printf("%d",result);return0;
        2.
                  What is the output of the above program?
        • 20
        • 16
        • 14
        • 12
\#include<stdio.h>voidbaz(intn){ if (n > 0) {
baz(n/2);printf("%d",n%2);
}
intmain(){
baz(10);return0;
                  What is the output of the above program?
        • 1010
        • 0101
        • 00101
        • 1101
\#include<stdio.h> intfactorial(intn)\{ if (n == 0)
{ return 1;
}else{
returnn*factorial(n-1);
intmain(){
intresult=factorial(5); printf("%d",result);return0;
                  What is the output of the above program?
        4.
        • 120
        • 24
         • 25
        • 20
#include<stdio.h>
intpower(intbase,intexponent){if(exponent==0){return1;
}else{
returnbase*power(base,exponent-1);
}
}
intmain(){
intresult=power(2,4);printf("%d",result); return0;
}
```

5. What is the output of the above program?

- 16
- 8
- 32
- 64

Week10: Structures

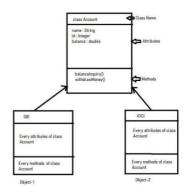
- 1. You are building a pay roll system for accompany with multiple departments. Designa programusing structures that stores employeed etails such as name, employee ID, and salary. Implement an array of structures to store employee records for each department. Calculate the total salary expenditure for each department and display it. Additionally, identify the department with the highest salary expenditure and acknowledge it as the top-performing department
- 2. VGP logistics is a premium Cargo service for Sending/receiving parcels from Vijayawada to Singapore. You are appointed as Manager in delivery department and need to maintain the arrival and delivery of the consignments sent/received. Create a structure consignment with the following Members Consignment_id, name, from, to, DOS (Date of Shipment), net weight, Address.

For Example:

Consignment_id:1008Name:HaierSteamerFrom:Vijayawada To:

Singapore

DOS(Date of Shipment):30-may-2023net_weight:28.8kg Address: Mint


Street Chennai

- 3. You have been assigned the task of developing a student grading system for a prestigious college. Design a program using structures that stores student details, such as name, roll number, and marks in various subjects. Implement an array of structures to store multiple student records and calculate the overall percentage for each student. Additionally, provide a functionality to generate a grade for each student based on their percentage and display it alongside their record.
- 4. You are developing a soldier management system for an army unit. Each soldier's record consists of the following information: name, rank, and years of service. Implement an array of structures to store the records of multiple soldiers. Write a C program to calculate and display the average years of service for all soldiers in the unit.
- 5. You are working on a ship management system for a naval fleet. Each ship's record contains the following details: name, type (e.g., aircraft carrier, destroyer), and year of commissioning. Implement an array of structures to store the ship records. Write a C program to search for a specific type of ship within the fleet and display the names of all ships belonging to that type.
- 6. You have been assigned the task of developing a pilot roster system for an air force squadron. Each pilot's record includes the following information: name, rank, and flight hours. Implement an array of structures to store the pilot records. Write a C program to find and display the pilot with the highest number of flight hours in the squadron.
- 7. You are working on a reservation system for a luxurious hotel. Create a program using structures that stores guest details, including name, room number, and check-in date. Implement an array of structures to store multiple guest records and allow the hotel staff to search for guests by either their room number or name. Provide an additional feature that calculates the duration of each guest's stay and generates the total revenue earned by the hotel.

Skill Oriented Exercise

- 8. You have been tasked with developing a library management system for a renowned library. Create a program using structures that stores book information, including title, author, and publication year. Implement an array of structures to store multiple book records and allow the librarian to search for books by either title or author's name. Enhance the system by enabling the librarian to borrow and return books, updating the book status accordingly.
- **9.** You have been assigned the task of creating a customer billing system using an array of structures. Each structure should store the customer's name, account number, and total amount due. Implement functions to add customer records, display all records, and find the customer with the highest amount due.
- **10.** You are working on a car inventory management system using an array of structures. Each structure should hold the details of a car, including the make, model, and year of manufacture. Implement functions to add car records, display all records, and find the newest car in the inventory.
- 11. You are developing a product inventory management system for a retail store. Each product has a unique identifier, name, price, and quantity in stock. Implement an array of structures to store the product records. Create functions to add new products, update product details, display all products, and search for products based on their identifier or name.

Week11: Classand Objects:

1. Create a class and the object code for the above scenario.

2. Develop code for Class and Object.

Week12: Data Abstraction

Developing a banking application that handles various types of accounts such as savings, checking, and loans.

• **Abstraction Use:** Create abstract classes or interfaces like Account with common methods (e.g., deposit(), withdraw(), get Balance()). Concrete classes (e.g., Savings Account, Checking Account) implement these methods. The user interacts with Account objects without needing to know the specific type of account or its internal workings.

Inheritance

Developing a graphical user interface (GUI)library with various types of buttons.

• Inheritance Use: Create a base class Button with common properties like label, size, and methods like click(). Derive subclasses like Image Button, Toggle Button, and RadioButtonthatinheritfromButtonandaddspecificpropertiesormethodsuniqueto each type of button.

Building a ne-commerce plat form with different types of products.

• Inheritance Use: Define a base class Product with common attributes like name, price, and methods like apply Discount(). Create subclasses like Electronics, Clothing, and Books, each adding specific attributes (e.g., Electronics might have warrantyPeriod, Clothing might have size and color).

Skill Oriented Exercise

Building educational software that manages different types of learning resources.

• Inheritance Use: Establish a base class Learning Resource with common properties like title, subject, and methods like display(). Derive subclasses such as Book, Video Lecture, and Quiz, each adding specific attributes and methods (e.g., Quizmight have questions and a method evaluate()).

Designing a system to classify and manage information about different animals.

• **Inheritance Use:** Define a base class Animal with common attributes like name, habitat, and methods like eat(), sleep(). Create subclasses such as Mammal, Bird, and Reptile, each with specific characteristics and methods(e.g., Bird might have methods fly()).

Week13: Polymorphism

An application that can draw various shapes such as circles, rectangles, and triangles.

• **Polymorphism Use:** Define an abstract class Shape with a method draw(). Implement subclasses Circle, Rectangle, and Triangle, each providing its specific draw() implementation. The application can then handle any shape object through the Shape interface

A program that simulates sounds of different animals.

• **Polymorphism Use:** Create a base class Animal with an abstract method make Sound(). Implement subclasses Dog, Cat, and Cow that override make Sound(). The simulator can then invoke make Sound() on any animal object

Managing different types of transportation such as cars, buses, and bicycles.

Skill Oriented Exercise

• **Polymorphism Use:** Define a base class Vehicle with an abstract method move(). Implement subclasses Car, Bus, and Bicycle, each with its own implementation of move(). The system can then manage different vehicles uniformly

A system sending notifications via email, SMS, and push notifications.

• **Polymorphism Use:** Define an abstract class Notification with a method send(). Implement subclasses Email Notification, SMS Notification, and Push Notification, each with its own send() method. The system can send notifications through any medium using the same interface

Week14: Virtual functions

A document edit or that supports different types of documents such as text documents, spreadsheets, and presentations.

• **Virtual Function Use:** Define a base class Document with a virtual function save(). Subclasses Text Document, Spreadsheet, and Presentation override save() to handle specific saving mechanisms.

Anaudioprocessinglibrarythathandlesvariousaudioeffectssuchasreverb,echo,and distortion.

Skill Oriented Exercise

• **Virtual Function Use:** Define a base class Audio Effect with a virtual function apply().SubclassesReverbEffect,EchoEffect,andDistortionEffectoverrideapply() to implement specific effects.

An AI strategy game that involves different types of game characters such as warriors, mages, and archers.

• Virtual Function Use: Define a base class Character with a virtual function attack(). Subclasses Warrior, Mage, and Archer override attack() to provide specific attack behaviors.

Week15: Exception handling

- 1) File Operations Scenario: An application needs to read data from a file. Exception Handling Use: Implement code to handle scenarios where the file might not exist, the application lacks permissions, or the file is corrupted. Use try-catch blocks to manage these exceptions:
- 2) E-Commerce Checkout Process Scenario: Ane-commerce application processes user orders during checkout.
- Exception Handling Use: Handle errors such as invalid payment details, out-of-stock items, or delivery address issues.

Skill Oriented Exercise

- 3)An application processes images for various operations like resizing, filtering, and saving.
 - Exception Handling Use: Handle errors such as unsupported file formats, corrupted files, or out-of-memory issues.

TEXTBOOKS:

- 1. ForouzanB.A&RichardF.Gilberg,A Structured ProgrammingApproachusingC,3rd Edition(2013), Cengage Learning.
- 2. JeriR.HanlyandElliotB.Koffman,ProblemsolvingandProgramDesigninC7th Edition, Pearson
- 3. ANSI and Turbo C++by Ashoke N.Kamthane, Pearson Education

REFERENCES:

- 4. BrianW.KernighanandDennisM.Ritchie,TheCProgrammingLanguage,PrenticeHall of India
- $5. \quad E. Balagurus amy, Computer fundamentals and C, 2nd Edition, McGraw-Hill \\$
- 6. YashavantKanetkar,LetUsC,18thEdition, BPB
 7. E.Balagurusamy,ObjectOrientedProgrammingusingC++,2ndEdition,McGraw-Hill

2410596: WEB APPLICATION DEVELOPMENT

B.Tech. I Year. I Sem

L T P C 0 0 2 1

COURSE OBJECTIVES: The students will try to learn

- HTML tags
- CSS
- Development of static web site
- Concepts of Java script
- Development of dynamic web site

COURSE OUTCOMES: After successful completion of the course, students should be able to

- Learn HTML tags and CSS
- Develop static web pages using HTML
- Use CSS in web pages
- Understand basic concepts of Javascript
- Develop dynamic web pages

PART-A

- 1. Write a HTML program to create a webpage about the different art forms of India, with appropriate title on the title bar. Use different heading tags for the headings, and list them using ordered list.
- 2. Write a HTML program to create sections in the document using appropriate tags and apply different color as background to them. Use internal hyperlinks to move to differentpoints within the page.
- 3. Write a HTML program to insert a picture on the webpage, giving description for the picture in a paragraph. Use properties of height, width, hspace, vspace and align, with different values.
- 4. Write a HTML Program, to create a profile of 2 pages, the First page containing the applicant's picture with personal details using unordered lists, and the second containing Educational details using tables. Use hyperlinks to move to the next page.
- 5. Using Frames create an Indian Flag and insert the image of chakra in the center.
- 6. Create a frame like structure based on the given diagram, such that When the first link is clicked, the contents of the first frame is filled with the corresponding information and when the second link is clicked the second frame is filled.

	Networks
• <u>Networks</u>	
• <u>Simulation</u>	Simulation

7. Write a program in HTML to demonstrate the concept of Image map, for India map.Map for areas rectangle, Circle and polygon.

PART-B

- 1. Write a program using Javascript to do the multiplication table for a number entered bythe user in the textbox.
- 2. Create a sparse array using the values entered by the user in the five textboxes, and useArray methods such as sort(),pop(),push(), reverse() and join().
- 3. Create a Math object and use methods ceil(),floor(), round() for rounding off thenumber, also use methods such as cos(), sin(),sqrt().
- 4. Write a Program using Javascript to print a bill for 5 items purchased by the user.
- 5. Write a program Using Date object, to display appropriate greeting message "Good Morning" or "Good Afternoon" or "Good Night", in an alert box with the user's name, after receiving the same in the prompt box.
- 6. To demonstrate the concept of styles, Write a program applying internal style for paragraph tag, and override the same by applying inline style. Also create an external CSS file applying styles for the headings.
- 7. Create a registration form for creating an email account, having the input type elements like checkbox, radio button, select option, text area and submit button, and validate the textboxes for verifying the password.
- 8. Create a web page using two image files, which switch between one another as the mouse pointer moves over the image. Use on Mouse Out and on Mouse Over event handlers.
- 9. Using filters apply opacity feature to blur the image and using Transition apply hover feature, so the image will be transparent again when the mouse pointer is placed on the image.

I-II

2420002: DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (CSE, CSD, CSM, ECE, EEE, MECH, CIVIL)

I Year B.Tech. II Sem.

LTPC

3 1 0 4

Course Overview:

This course plays a crucial role in engineering, serving as the foundation upon which engineers build and apply their knowledge to solve real world applications. It presents a systematic and comprehensive introduction to ordinary differential equations and vector calculus for engineering students .Mathematical concepts and various techniques are presented in a clear logical and concise manner. A linear differential equation is used to regulate the flow of electricity in various electrical circuits like LR, LCR and CR circuits. Vector calculus is extensively used in the description of electromagnetic fields, gravitational fields and fluid flow.

Pre-requisites: Mathematics courses of 10+2 year of study.

Course Objectives: The student will try to learn

- Methods of solving the differential equations of first order and first degree.
- Concept of higher order liner differential equations.
- Concept, properties of Laplace transforms, solving ordinary differential equations by using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions.
- The basic properties of vector valued functions and their applications to line, surface and volume integrals.

Course outcomes: After successful completion of the course, students should be able to

- **CO1:** Identify whether the given first order differential equation is exact or not.
- **CO2:** Solve higher differential equation and apply the concept of differential equation to real world problems.
- **CO3:** Usethe Laplace transforms techniques for solving ODE's.
- **CO4:** Apply the Del operator to scalar and vector point functions.
- **CO5:** Evaluate the line, surface and volume integrals and converting them from one to another.

UNIT-I: First Order ODE 10L

Exact differential equations, equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order 10 L

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , sin ax,cos ax, polynomials in x, $e^{ax}V(x)$ and x V(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation.

UNIT-III: Laplace transforms 10 L

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function (All without proof), Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation 8 L

Vectorpointfunctionsandscalarpointfunctions, Gradient, Divergence and Curl, Directional derivatives, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V:Vector Integration 10 L

Line, Surface and Volume Integrals, Theorems of Green's, Gauss and Stokes's (without proof) and their applications.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition,2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition,2016.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. RajnishVerma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

2420008: APPLIED PHYSICS

B.Tech. I Year II. Sem.

LTPC 3 1 0 4

Course Overview

Applied Physics is the application of the Physics to solve Scientific or Engineering Problems. It is considered as bridge between Physics and Engineering.

Applied Physics under graduate program stress the basic Physics that underlies most developments in engineering and mathematical tools that are important to engineers.

Prerequisites:10 + 2 Physics

Course Objectives: The student will try to learn:

- 1. Understand the basic principles of quantum physics and band theory of solids.
- 2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- 3. Study the fundamental concepts related to the dielectric, magnetic materials.
- 4. Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
- 5. Study the characteristics of lasers and optical fibers.

Course Outcomes: After successful completion of the Course the students should be able to

- 1. Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- 2. Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric, magnetic materials and their applications.
- 4. Appreciate the features and applications of Nano materials.
- 5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, Blackbody radiation, Photoelectric effect, de-Broglie Hypothesis and matter waves, Davisson and Germer experiment, Heisenberg uncertainty principle, Born interpretation of the wave function, Time independent Schrodinger wave equation, Particle in one dimensional potential box.

Solids: Free electron theory (Drude & Lorentz, Somme rfeld), Bloch's theorem -Kronig-Penney model, Effective mass of electron, Origin of energy bands, Classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors, Hall effect, Direct and Indirect band gap semiconductors, Construction, principle of operation and characteristics of P-N Junction diode, Zener diode and Bipolar junction transistor (BJT)

Opto-devices- Light emitting diode (LED), PIN diode, and Solar cell, their structure, materials, working principle and characteristics, Solar cell application- Space craft.

UNIT - III: DIELECTRIC AND MAGNETIC MATERIALS

Dielectric Materials: Introduction to dielectrics, Polarization, Permittivity, Dielectric constant, Types of polarizations (Qualitative), Internal field in Solids, Clausius-Mossotti equation, Ferroelectric, Piezoelectric and Pyroelectric materials, Applications.

Magnetic Materials: Introduction to Magnetism, Magnetization, Permeability, Susceptibility, Classification of Magnetic Materials, Hysteresis curve, Soft and Hard magnetic materials, Magnetostriction, Magneto resistance, Magnetic field sensors and bubble memory devices.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, Quantum confinement, Surface to volume ratio, Bottom-up fabrication: Sol-gel, Precipitation methods, Top-down fabrication: Ball milling, Physical Vapor Deposition (PVD), Characterization techniques - XRD, SEM and TEM, Applications of nanomaterials.

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relations, Lasing action, Population inversion, Pumping methods, Ruby laser, He-Ne laser, CO₂ laser, Applications of laser- Medical and Military.

Fiber Optics: Introduction to optical fiber, Total internal reflection, Construction of optical fiber, Acceptance angle, Numerical aperture, Classification of optical fibers, Losses in optical fiber, Optical fiber for communication system, Applications of optical fiber-Endoscopy.

TEXT BOOKS:

- 1. M. N. Avadhanulu, P.G. Kshirsagar& TVS Arun Murthy" A Text book of Engineering Physics", S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, McGraw Hill, 4thEdition,2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition, 2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1stEdition, 2021.

REFERENCE BOOKS:

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2ndEdition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11thEdition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.

24X0010: ENGLISH FOR SKILL ENHANCEMENT

B.Tech. I Year.II Sem.

LTPC

3 0 0 3

Course Overview:

1. The English language plays a vital role in engineering education. Acquiring LSRW skills has become a prerequisite to learning about different technologies and their intricacies.

2. All these extracts are fascinating, thought-provoking, and contextual to engineering students. The authors have sincerely tried connecting every lesson with the modules of vocabulary, grammar, reading comprehension and writing tasks stipulated under each module. The textbook includes several exercises and activities involving the student's language skills practice. They are extremely encouraging and motivational and cater to a group of students with mixed abilities.

3. Each module starts with the preparatory task which can stimulate an interesting discussion among the students in the classroom. Adequate explanations and more examples are provided in vocabulary and grammar sections to enable students to work independently in and outside the classroom. The reading part suggests improving students' reading skills and provides reading comprehension exercises. The writing module aims at developing the learner's writing skills by providing conceptual discussions and exercises in different forms of written communication such as formal letters, CV/ résumé and job application letters, e-mails, reports, etc.

Prerequisites: Language Comprehension

Course Objectives: The students will try to learn:

- 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- 2. Develop study skills and communication skills in various professional situations.
- 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes: After successful completion of the course, students should be able to:

- 1. Understand the importance of vocabulary and sentence structures.
- 2. Choose appropriate vocabulary and sentence structures for their oral andwritten communication.
- 3. Demonstrate their understanding of the rules of functional grammar.
- 4. Develop comprehension skills from the known and unknown passages.
- 5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis andreports in various contexts.

MODULE - I (No of Hours = 7)

Chapter entitled 'Toasted English' by R.K. Narayan from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes Acquaintance with Prefixes and Suffixes from Foreign Languages
to Form Derivatives - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing concerning Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Writing: Sentence Structures -Use of Phrases and Clauses in Sentences-Importance of Proper Punctuation- Techniques for Writing precisely – Paragraph Writing – Types, Structures and Features of a Paragraph - Creating Coherence- Organizing Principles of Paragraphs in Documents.

MODULE - II (No of Hours = 6)

Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs

Grammar: Identifying Common Errors in Writing concerning Noun-pronounAgreement and Subject-verb Agreement.

Reading: Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events – Classifying- Providing Examples or Evidence.

MODULE - III (No of Hours = 7)

The chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from

"English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English. **Grammar:** Identifying Common Errors in Writing Concerning Misplaced Modifiers and Tenses.

Reading: Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises for Practice **Writing:** Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter of Requisition, Email Etiquette, Job Application with CV/Resume.

MODULE - IV (No of Hours = 6)

Chapter entitled 'Art and Literature' by Abdul Kalam from "English: Language,

Contextand Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for

Practice

Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis

Writing.

MODULE - V (No of Hours = 6)

Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English:

Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage

Grammar: Common Errors in English (*Covering all the other aspects of*

grammar whichwere not covered in the previous modules)

Reading: Reading Comprehension-Exercises for Practice

Writing: Technical Reports- Introduction – Characteristics of a Report – Categories

of

Reports Formats- Structure of Reports (Manuscript Format) - Types of

Reports

- Writing a Report.

Note: Listening and Speaking Skills which are given under Module 6 in the AICTE ModelCurriculum are covered in the syllabus of the ELCS Lab Course.

- Note: 1. As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.
- Note: 2. Based on the recommendations of NEP2020, teachers are requested to be flexible in adopting Blended Learning in dealing with the course contents. They are advised to teach 40 per cent of each topic from the syllabus in blended mode.

TEXTBOOK:

1. "English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022. Print.

REFERENCE BOOKS:

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of FunctionalLanguage, Grammar, and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
- 5. (2019). Technical Communication. Wiley India Pvt. Ltd.
- Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.
- 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

24X0502: Essentials of Problem Solving Using Python

B.Tech. I Year II Sem.

L T P C

Course Overview:

This course gives acquaintance to Python Programming and Graph Theory. The course deals with Python programming concepts and concepts in graph theory like properties of standard graphs, Eulerian graphs, Hamiltonian graphs, Chordal graphs, Distances in graphs, Planar graphs, graph connectivity and Colouring of graphs.

Graph theory is used in Network Topologies and Routing Algorithms, Algorithm Design, Social Network Design, Logistics.

Prerequisites:

• A course on "Problem solving using C and C++".

Course Objectives: The students will try to learn

- Basic building blocks of python
- Using of Functions and Modules
- Importance of Multithreading in problem solving
- The fundamental concepts of graph theory
- Graph coloring and traversal algorithms for solving real-worldproblems

Course Outcomes: After successful completion of the course, students should beable to

- Construct Python data structures programs using tuples sets and dictionaries
- Design Programs using Functions and Modules
- Implement Multithread concept in solving problems
- Understand graph terminology
- Build efficient graph routing algorithms for various optimization problems on graphs.

Module-I [10]

Python Basics: Python Objects, Operators, Python Numbers, Operators, Built-inFunctions. Conditionals and Loops-if, else, elif, for, while, break, continue, pass.

Sequences: Strings, Lists, and Tuples- Built-in Functions, Special features. Mapping and Set Types: Dictionaries, Sets.

Module –II [9]

Functions and Functional Programming —Calling Functions , Creating Functions, Passing Functions , Formal Arguments, Variable-Length Arguments, Functional Programming. **Modules**—Modules and Files, Namespaces, Importing Modules, Module Built-in Functions, Packages, Related modules. Module –III

Files and Input / Output: File Objects, File Built-in Functions, File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments.

Multithreaded Programming: Introduction, Threads and Processes, Python Threads, the Global Interpreter Lock, Thread Module, Threading Module.

Module -IV [8]

Graph terminology, Digraphs, Weighted graphs, Complete graphs, Graph complements, Bipartite graphs, Graph combinations, Isomorphism's, Matrix representations of graphs, incidence and adjacency matrices, Degree Sequence, Eulerian circuit: Konigsberg bridge problem, Touring a graph; Eulerian graphs, Hamiltonian cycles

Module - V [7]

Shortest paths: Dijkstra's algorithm, Walks using matrices.

Graph Coloring And Graph Algorithms: Four color theorem, Vertex Coloring, Edge Coloring, Coloring Variations.

Graph traversal: Depth-First Search, Breadth-First Search and its applications; The traveling salesman problem, Minimum Spanning Trees: Kruskal's and Prim's algorithm

TEXTBOOKS:

- 1. Core Python Programming, Wesley J. Chun, Third Edition, Prentice Hall PTR
- 2. Karin R Saoub, Graph Theory: An Introduction to Proofs, Algorithms, and Applications, 1 st edition, Chapman and Hall, 2021.

REFERENCES:

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Introduction to Python, Kenneth A. Lambert, Cengage
- 3. Python Programming: A Modern Approach, VamsiKurama, Pearson
- 4. Learning Python, Mark Lutz, O'Really
- 5. R Balakrishnan, K Ranganathan, A Textbook of Graph Theory, Springer Exclusive, 2nd edition, 2019.

24X0372: ENGINEERING WORK SHOP (Common to all branches)

B.Tech.I Year.II Semester

L T P C

Course Overview: After successful completion of the course, students should able to learn.

Engineering Workshops: A foundational course aimed at introducing first-year students to a variety of tools, equipment, and techniques essential for creating physical objects and mechanisms using different materials. This course provides an opportunity for students to build confidence and gain practical experience in carpentry, fitting, house wiring, tin-smithy, black smithy, welding, and principles of modern manufacturing processes.

Prerequisite: NIL

Course Objective: The student will able to

- 1. To gain good basic working knowledge required for the production of various engineering products.
- 2. To study different tools uses and their demonstration.
- 3. To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in engineering field.
- 4. To develop a right attitude, team working, precision and safety at work place.
- 5. It explains the construction, function use and application different working tools and equipments.

Course outcomes: At the end of the course students should able to

- 1. Explain the design and model different prototype in the trade of carpentry such as Cross lap joint, Dove tail joint.
- 2. Demonstrate the design and model various basic prototypes in the trade of fitting such as straight fit and V-fit.
- 3. Understand to make various basic prototypes in the trade of tin smithy such as rectangular tray and open cylinder.
- 4. Demonstrate the design and model various basic prototype in welding and black smithy.
- 5. Understand to perform various basic house wiring techniques such as connecting one lamp with one switch, connecting two lamps with one switch.

Course content:

Module -I: CARPENTRY AND FITTING

- Carpentry Introduction, Carpentry tools, sequence of operations and applications (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- Fitting Introduction, fitting tools, sequence of operations and applications (V-Fit, Dovetail Fit & Semi-circular fit)

Module -II: TIN SMITHY AND BLACKSMITHY

- Tin-Smithy Introduction, Tin smithy tools, sequence of operations and applications (Square Tin, Rectangular Tray & Donical Funnel).
- Blacksmithy- Introduction, Blacksmithy tools, sequence of operations and applications (Round to Square, Fan Hook and S-Hook)

Module -III: HOUSE WIRING AND WELDING

- House-wiring Introduction, Electrical wiring tools, sequence of Operations and applications (Parallel & Series, Two-way Switch and Tube Light)
- Welding Practice Introduction, electrode, welding tools, and sequence of Operations. Advantages and applications (Arc Welding).

Text Book:

- 1. Workshop practice/B.L. Juneja/ Cengage
- 2. Workshop manual/K.Venugopal/ Anuradha

Reference:

- 1. Work shop manual /P.Kannaiah/K.L. Narayana
- 2. Work shop Manual /Venkat Reddy /BSP

24X00071: APPLIED PHYSICS LAB

B.Tech. I Year II Sem.

L T P C 0 0 3 1.5

Course Objectives: The objectives of this course for the student to

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect Experiment understands their measurements.
- 2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap.
- 3. Apply the analytical techniques & graphical analysis for Stewart Gees, LCR & RC.
- 4. Understanding the method of least squares fitting.
- 5.To develop intellectual communication skills through discussion on basic principles of scientific concepts in a group.

Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge in calculating the quality factor and time constant of LCR and RC circuits
- 4. Understand the variation of magnetic field at various points.
- 5. Carried out data analysis.

LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode.
- 5. Input and output characteristics of BJT (CE, CB & CC configurations).
- 6. V-I and L-I characteristics of light emitting diode (LED) and LASER.
- 7. V-I Characteristics of solar cell.
- 8. Determination of Energy gap of a semiconductor.
- 9. To determine the time constant of R-C circuit.
- 10. Determination of Acceptance Angle and Numerical Aperture of an optical fiber.
- 11. Understanding the method of least squares Torsional pendulum as an example.
- 12. Determination of magnetic field induction along the axis of a current carrying coil.

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

24X0073: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY B.Tech. I Year. II Sem. L T P C 0 0 2 1

The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and the students with the use of English in everyday situations both in formal and informal contexts.

Course Objective

- ✓ To facilitate computer-assisted multi-media instruction enablingindividualized and independent language learning
- ✓ To sensitize the students to the nuances of English speech sounds, wordaccent, intonation and rhythm
- ✓ To bring about a consistent accent and intelligibility in students'
 pronunciation of English by providing an opportunity for practice
 in speaking
- ✓ To improve the fluency of students in spoken English and neutralize theimpact of dialects.
- ✓ To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to:

- ✓ Understand the nuances of the English language through audio-visual experienceand group activities
- ✓ Neutralize their accent for intelligibility
- ✓ Speak with clarity and confidence which in turn enhances their employability skills

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills:

Objectives

1. To enable students to develop their listening skills so that they may appreciate therole in the LSRW skills approach to language and

- improve their pronunciation
- 2. To equip students with necessary training in listening, so that they can comprehend thespeech of people of different backgrounds and regions Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and to recognize and use the right intonation in sentences.
 - Listening to general content
 - · Listening to fill up information
 - Intensive listening
 - · Listening to specific information

Speaking Skills:

Objectives

- 1. To involve students in speaking activities in various contexts
- To enable students to express themselves fluently and appropriately in social andprofessional contexts
- Oral practice
- Describing objects/situations/people
- Role play Individual/Group activities
- Just A Minute (JAM) Sessions

The following course content is prescribed for the English Language and Communication Skills Lab.

Exercise – ICALL Lab:

Understand Listening Skill- Its importance – Purpose- Process- Types- Barriers Effective Listening. Practice: Introduction to Phonetics – Speech Sounds –
 Vowels and Consonants

 Minimal Pairs- Consonant Clusters- Past Tense Marker and Plural Marker- Testing Exercises

ICS Lab:

Understand: Spoken vs. Written Language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave

Introducing Oneself and Others.

Exercise

-II

CALL

Lab:

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern insentences – Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stresspattern in sentences – Intonation - *Testing Exercises*

ICS Lab:

Understand: Features of Good Conversation – Strategies for Effective
 Communication. Practice: Situational Dialogues – Role Play- Expressions in
 Various Situations – Making Requests and Seeking Permissions - Telephone
 Etiquette.

Exercise

- III

CALL

Lab:

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference
 (MTI). Practice: Common Indian Variants in Pronunciation – Differences
 between British and American Pronunciation - Testing Exercises

ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing *Practice*: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise

-IV

CALL

Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:

Understand: Public Speaking – Exposure to Structured Talks -

Non-verbalCommunication- Presentation Skills.

Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise

 $-\mathbf{V}$

CALL

Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises

ICS Lab:

Understand: Group Discussion

Practice: Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High-Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T.V. or LCD, a digital stereo –audio & video system and camcorder etc.

Source of Material (Master Copy):

• Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit thecontents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) CambridgeUniversity Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced)
 CambridgeUniversity Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

REFERENCE BOOKS:

- (2022). English Language Communication Skills Lab Manual cum Workbook.
 Cengage Learning India Pvt. Ltd.
- 2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook*. Cambridge University Press
- 3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook*. OxfordUniversity Press
- 4. Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities.
 - Orient Black Swan Pvt. Ltd.
- 5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach*. Cambridge University Press.

24X0572:Essentials Of Problem Solving Using Python Laboratory

B.Tech. I Year II Sem.

L T P C

2 1

Course Overview:

This course gives acquaintance to Python Programming and Graph Theory. It dealswith Python programming concepts and concepts in graph theory like properties of standard graphs, Eulerian graphs, Hamiltonian graphs, Chordal graphs, Distances in graphs, Planar graphs, graph connectivity and Colouring of graphs. Python programming is used developing machine learning and data science applications. Graph theory is used in Network Topologies and Routing Algorithms, Algorithm Design, Social Network Design, Logistics.

Prerequisites:

A course on "Problem solving using C and C++".

Co-Requisites: Essentials of problem solving

Course Objectives: The students will try to learn

- Basic building blocks of python
- Using of Functions and Modules
- Importance of Multithreading in problem solving
- The fundamental concepts of graph theory
- Graph coloring and traversal algorithms for solving real-world problems

Course Outcomes: After successful completion of the course, students should be able to

- Construct Python data structures programs using tuples sets and dictionaries
- Design Programs using Functions and Modules
- Implement Multithread concept in solving problems
- Understand graph terminology
- Build efficient graph routing algorithms for various optimization problems ongraphs.

Week 1: Python Numbers

- a) You are developing a program to determine whether a given year is a leap year, using the following formula: a leap year is one that is divisible by four, but not by one hundred, unless it is also divisible by four hundred. For example, 1992, 1996, and 2000 are leap years, but 1967 and 1900 are not. The next leap year falling on a century is 2400.
- b) You are developing a program to determine the greatest common divisor and least common multiple of a pair of integers.
- c) You are developing a program to create a calculator application. Write code that will take

two numbers and an operator in the format: N1 OP N2, where N1 and N2 are floating point or integer values, and OP is one of the following: +, -, *, /, %, **, representing addition, subtraction, multiplication, division, modulus/remainder, and exponentiation, respectively, and displays the result of carrying out that operation on the input operands.

Hint: You may use the string split() method, but you cannot use the exal () built-in function.

Skill Oriented Exercise

- 1. The cricket World Cup has started in Chefland. There are many teams participating in the group stage matches. Any team that scores 12 or more points in the group stage matches qualifies for the next stage.
- 2. The elections in Chefland have concluded, and the results are conducted. Chef received X votes, and his rival Chefu received Y. Chef thinks he dominated the election if and only if he received at least double the number of votes Chefu received. Did Chef dominate the election?
- 3. Bob has an account in the Bobby Bank. His current account balance is W rupees. Each month, the office in which Bob works deposits a fixed amount of X rupees to his account. Y rupees is deducted from Bob's account each month as bank charges. Find his final account balance after Z months. Note that the account balance can be negative as well.
 - 4. You're a bit all over the place as a college student. You used to eat out at expensive restaurants almost every day until your parents gave you a talking-to about being irresponsible. Now, you've got to control your eating and spending habits. So, here's the plan: you'll stick to the college mess for your meals every day, except Sundays. On Sundays, you're treating yourself to those fancy restaurant meals. The cost is Rs.X for the mess food each day, and Rs. Y for the restaurant splurges. Now, what's the cost of food per week? Note that you don't have to pay for the mess on Sundays. (A week has seven days, as usual.)

Week 2: Control Flow

- a) Write a Program for checking whether the given number is a prime number ornot.
- b) Write a program to print Fibonacci series upto given n value.
- c) Write a program to calculate factorial of given integer number.
- d) Write a program to calculate value of the following series $1+x-x^2+x^3-x^4+x^n$.
- e) Write a program to print Pascal triangle.

Skill Oriented Exercise

- 1. Charlie is 17 years old and is eager to vote. Write a Python program to check if he meetsthe legal voting age of 18.
- 2. Your friend given a list of numbers to you and asked to find out the largest numberamong them. Write a python program to find the largest number.
- 3. Daemon don't like the multiples of 7 so help him to write a Python program that printsnumbers from 1 to 30 but skip the number if it encounters multiple of a 7.

4. Bob has an account in the Bobby Bank. His current account balance is W rupees. Each month, the office in which Bob works deposits a fixed amount of X rupees to his account.Y rupees is deducted from Bob's account each month as bank charges. Find his final account balance after Z months. Note that the account balance can be negative as well.

Week-3 Python Sequences

- a) Write a program to sort the numbers in ascending order and strings in reverse alphabetical order.
- b) Given an integer value, return a string with the equivalent English text of each digit. For example, an input of 89 results in "eight-nine" being returned. Write a programto implement it.
- c) Write a program to create a function that will return another string similar to the input string, but with its case inverted. For example, input of "Mr. Ed" will result in "mR.eD" as the output string.
- d) Write a program to take a string and append a backward copy of that string, making a palindrome.

Skill Oriented Exercise

- 1. Alice loves quotes. Write a Python program to count the number of characters in her favorite quote: "To be or not to be, that is the question.".
- 2. Emily wants to know if her friends name is a palindrome. Write a Python program to check for a name is a palindrome.
- 3. Charlie just read a new book and wants to add it to his set of favorite books {"The Hobbit", "Harry Potter"}. Write a Python program to add "The Great Gatsby" to Charlie's set and print the updated set.
- 4. You have a list of friends' ages: [25, 22, 29, 24]. Write a Python program to sort this listin ascending order.

Week-4 Python Dictionaries

- a) Write a program to create a dictionary and display its keys alphabetically.
- b) Write a program to take a dictionary as input and return one asoutput, but the valuesare now the keys and vice versa.
- c) Given a List, extract all elements whose frequency is greater than K.Ex: Input test_list = [4,6,4,3,3,4,3,4,3,8], k=3

 Output =[4,3]

Skill Oriented Exercise

- 1. You have a dictionary of your friends' favorite fruits: {"Alice": "Apple", "Bob": "Banana", "Charlie": "Cherry"}. Write a Python program to print Bob's favorite fruit.
- 2. John manages a small store and needs a program to track his product inventory. Write a Python program that will help John Creating the dictionary which contains the name and price of the product and print the maximum product name along with its price.

Week-5 Files

- a) Write a program to compare two text files. If they are different, give the line and column numbers in the files where the first difference occurs.
- b) Write a program to compute the number of characters, words and lines in a file.

Skill Oriented Exercise

- 1. Alice wants to list all files in her current directory. Write a Python program to import theos module and use it to print the names of all files in the current directory.
- 2. Charlie wants to read the contents of books.txt line by line and print each book name.Write a Python program to open the file and use the readline method to print each line.
- 3. Write a Python program greet.py that takes a name as a command-line argument and prints "Hello, [name]!". Demonstrate how to run it with the argument "Alice".

Week- 6&7 Functions

- a) Write a function ball collide that takes two balls as parameters and computes if they are colliding. Your function should return a Boolean representing whether or not the balls are colliding.
 - Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius If (distance between two balls centers) <= (sum of their radii) then (they are colliding)
- b) Find mean, median, mode for the given set of numbers in a list.
- c) Write simple functions max2() and min2() that take two items and return the larger and smaller item, respectively. They should work on arbitrary Python objects. For example, max2(4, 8) and min2(4, 8) would each return 8 and 4, respectively.
- d) Write a function nearly equal to test whether two strings are nearly equal. Two strings a and b are nearly equal when a can be generated by a single mutation on b.
- e) Write a function dups to find all duplicates in the list.
- f) Write a function unique to find all the unique elements of a list.
- g) Write a function cumulative_product to compute cumulative product of alist of numbers.
- h) Write a function reverse to reverse a list. Without using the reverse function.
- i) Write function to compute GCD, LCM of two numbers. Each function should n't exceed one line.

Skill Oriented Exercise

1. Alice wants to create a reusable function to greet her friends. Write a Python function greet that takes a friend's name as an argument and prints a greeting. Call the function with the name "Bob."

- 2. Charlie needs a function that can sum any number of arguments. Write a function sum_numbers that takes a variable number of arguments and returns their sum. Use this function to sum 1, 2, 3, and 4.
- 3. Alice wants a quick way to increment a number by 1. Write a lambda function that takes a number and adds 1 to it. Use this lambda to increment 7.
- 4. Bob has written a custom module called mymath.py with a function add(a, b) that returns the sum of a and b. Write a Python program to import this module and use the add function to add 3 and 5.

Week- 8 Multithreading

- a) Write a program to create thread using thread module.
- b) Write a program to create thread using threading module.
- c) Write a Program to use Python's threading module to calculate the square and cube of anumber concurrently.

Skill Oriented Exercise

- 1. Alice wants to perform two tasks simultaneously: counting numbers and printing messages. Write a Python program to create two threads, one for counting from 1 to 5 and another for printing "Hello" five times.
- 2. Charlie is learning about the Global Interpreter Lock (GIL). Write a Python program demonstrating how GIL affects multi-threaded CPU-bound tasks by incrementing a counter in two threads.
- 3. Diana wants to print numbers in a separate thread using the thread module. Write a Python program to print numbers from 1 to 5 in a new thread.
- 4. Emily needs a background thread to print a heartbeat message every second. Write a Python program to create a daemon thread that prints "Heartbeat" every second.
- 5. Alice is managing a shared resource. Write a Python program where two threads increment a shared counter using a threading.Lock to avoid race conditions.

Week 9:

- a) Write a Python program to implement Euler Circuit.
- b) Write a Python program to implement Dijkstra's algorithm.
- c) Given a connected graph G with N nodes and M edges (edges are bi-directional). Every node is assigned a value A[i]. We define a value of a simple path as :

Value of path = Maximum of (absolute difference between values of adjacent nodes in a path). A path consists of a sequence of nodes starting with start node S and end node E.

S-u1-u2-...-E is a simple path if all nodes on the path are distinct and S,u1,u2,...,E are nodes in G.

Given a start node S and end node E, find the minimum possible "value of path" which starts with node S and ends with node E.

d) Yatin created an interesting problem for his college juniors. Can you solve it?

Given N rooms, where each room has a one-way door to a room denoted by room[i], where $1 \le i \le N$. Find a positive integer K such that, if a person starts from room i, (1 <= i <= N), and continuously moves to the room it is connected to (i.e. room[i]), the person should end up in room i after K steps;

Note: The condition should hold for each room. If there are multiple possible values of K modulo (109+7), find the smallest one. If there is no valid value of K, output -1

Week 10: Implement the following using python

- a) M-coloring
- b) Vertex coloring
- c) Edge coloring

Week 11: Implement the following graph traversal methods.

- a) Depth-First Search
- **b)** Breadth-First Search
- **c)** You are presented with a network comprising *N* computers and *M* wired connections between them. Your objective is to optimize the network's connectivity using precisely *K* wires from your inventory. The aim is to **maximize** the number of computers that can be linked together within the given constraints. Your task is to determine and report the size of the largest network that can be formed by establishing these connections.

In the context of this problem, computers are considered connected if they share either a direct or indirect wired connection. It is worth noting that the value of K will always be less than the number of isolated (standalone) networks in the given configuration, and it may even be zero.

d) A country consists of *N* cities. These cities are connected with each other using *N*-1 bidirectional roads that are in the form of a tree. Each city is numbered from 1 to *N*. You want to safeguard all the roads in the country from any danger, and therefore, you decide to place cameras in certain cities. A camera in a city cansafeguard all the roads directly connected to it. Your task is to determine the minimum number of cameras that are required to safeguard the entire country.

Week 12: Travelling Salesman problem.

a) You are working in a salesmen company as a programmer.

There are *n* towns in your country and *m* directed roads between them. Each road has a cost person should spend on fuel. The company wants to sell goods in all *n* towns. There are infinitely many salesmen in the company. We can choose some positive number of salesmen and give a non-empty list of towns to each of them. Towns from the list are the towns to sell goods in. Each salesman will visit all the towns in his list in this particular order in cycle (after the last town he will return to the first town and so on). Salesman can visit other towns on his way but he will not sell goods in these towns. Two salesmen cannot sell goods in one town because it will attract unnecessary attention to your company. But for every town there must be a salesman who sell goods in this town. If salesman's list of towns consists of exactly one town then he should pay fee to stay in this town each month (each town has its own fee) or he should go for a round trip and spend money on fuel.

Your task is to calculate the minimal amount of money company must spend monthly to achieve its goals. We will assume that every salesman will spend a month to make one cycle.

- b) It is the final leg of the most famous amazing race. The top 'n' competitors have made itto the final. The final race has just begun. The race has 'm' checkpoints. Each team can reach any of the 'm' checkpoint but after a team reaches a particular checkpointthat checkpoint gets closed and is not open to any other team. The race ends when 'k' teams finish the race. Each team travel at a constant speed throughout the race which might be different for different teams. Given the coordinates of n teams and m checkpoints and speed of individual team return the value of minimum time needed to end the race.
- c) Little Jhool is a very lenient teaching assistant in his college. He doesn't like cutting the marks of students, so obviously, every student in his tutorial loves him. But anyway, the teacher has got to know about the leniency of Jhool while giving marks, so this time in exam, he decides to give a different exam paper to every single student to check how well have the students been taught by Jhool. Now, Little Jhool knows the strong and weak topics of every single student, so he wants to maximize the total marks obtained by students in his tutorial. You are given the number of students in Jhool's tutorial, denoted by **n n** also being the number of different exam papers that is, one for every student. Every student will get only one exam paper to solve. You are further given a matrix, (n x n) denoting the marks every student will get if he attempts a particular exam paper. You've to help Jhool figure out a way by which he could maximize the total score obtained by his entire class.

Week 13: Construct minimal spanning tree using the following

- a) Prim's Algorithm
- b) Kruskal's Algorithm
- c) There are total N Hacker-cities in a plane. Each city is located on
- d) coordinates (X[i],Y[i]) and there can be any number of cities on the same coordinates.

You have to make these cities connected by constructing some roads in such a waythat it is possible to travel between every pair of cities by traversing the roads. The

cost of constructing one road between any two cities is the minimum of the absolute difference between their *X* and *Y* coordinates.

As you want to earn more and more, you decided to do this in the most optimal way possible, such that the total cost of constructing these roads is minimal. You have to return the minimum money you need to spend on connecting all the cities.

e) Tom is visiting the country Hackerland. Hackerland has *n* cities and *m* bi-directional roads. There are *k* types of tokens. Token *i* costs *ci*. The costs of the tokens are such that for all 2≤*i*≤*k*, *ci*≥2*ci*−1. For each road, you need to have a particular set of tokens, if you want to travel it. Note that you don't have to give the tokens, you just need to show them. Thus, one token can be used at any number of roads, where it is required. Tom wants to select a set of tokens, such that using them, he can go from any city to any other city. You have to help him minimize the total cost of tokens he buys.

TEXT BOOKS:

- 1. Core Python Programming, Wesley J. Chun, Third Edition, Pearson.
- 2. Karin R Saoub, Graph Theory: An Introduction to Proofs, Algorithms, and Applications, 1 st edition, Chapman and Hall, 2021.

REFERENCE BOOKS:

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Introduction to Python, Kenneth A. Lambert, Cengage
- 3. Python Programming: A Modern Approach, VamsiKurama, Pearson
- 4. Learning Python, Mark Lutz, O'Really.

24X0027: PUBLICSPEAKING SKILLS

B.Tech, I Year, II Sem.

LTPC 2 0 0 0

Course Description:

This course is designed to develop students' public speaking skills, focusing on speech preparation,

delivery techniques, and the use of non-verbal communication. Students will learn to present

effectively in various contexts, from formal presentations to informal meetings.

Prerequisites: Basic communication skills

Course Objectives: The students will learn:

Understand the fundamentals and prerequisites of public speaking.

Develop the ability to convert ideas into structured speeches.

Enhance performance through verbal and non-verbal communication.

Master different types of public speaking and professional presentations.

Learn the etiquette and manner isms required for effective public speaking.

Course Outcomes: By the end of this course, students will be able to:

1. **Prepareanddeliver**speechesconfidentlybyorganizingcontentandovercomingstagefright.

2. **Utilize** verbal and non-verbal communication to engage the audience effectively.

3. Adapt to different contexts by tailoring speeches for diverse audiences and settings.

4. **Exhibit** professionalism and creativity using proper etiquette, rhetorical devices, and creative language

Module1: Fundament also f Public Speaking (Noofhours:6)

This unit introduces public speaking, covering its importance, course structure, assessment methods, and prerequisites like understanding the audience, research, organizing speech structure, over coming

Stage fright, and practicing speech delivery.

Module2: Speech Development and Delivery(Noofhours:6)

This unit focuses on converting ideas into action through brainstorming, outlining, drafting speeches,

using storytelling, and practising impromptu speaking. It also emphasizes public speaking as a per

formative act, covering voice modulation, eye contact, audience engagement, effective pacing,

gestures, and techniques for handling questions and interruptions.

Module3:Non-verbalCommunication and Speech Types(Noofhours:5)

This unit explores non-verbal communication's role in public speaking, covering the importance and

types of cues like facial expressions and gestures, aligning verbal with non-verbal messages, observing audience feedback, and adapting non-verbal communication to virtual settings. It also addresses various types of public speaking, including informative, persuasive, special occasion, motivational speeches, panel discussions, and debates.

Module4: Professional and Formal Speaking (Noofhours: 6)

This unit covers speeches, including analysis of famous examples, preparing and delivering various types, conducting peer and self-evaluation, and effectively utilizing visual aids and multimedia. Adapting speeches for diverse audiences, and addressing practical skills for interviews, professional communication, conducting meetings, conferences, presentations, and building professional networks.

Module5: Advanced Techniques and Professionalism(Noofhours:5)

This unit focuses on structuring and delivering professional presentations effectively, using creative language techniques for impactful messaging, and embodying proper etiquette and professionalism in public speaking.

TEXTBOOK:

• "The Art of Public Speaking" by Dale Carnegie Prabhat Prakashan Pvt. Ltd.; First Edition (31 December 2020) ISBN-10:8184302614

REFERENCEBOOKS:

- "The Art of Public Speaking" by Stephen E. Lucas, ISBN: 978-0073523910, Year of Publication: 2014, Publisher: McGraw-Hill Education
- Confessions of a Public Speaker" by Scott Berkun, ISBN: 978-0596801991, Year of Publication: 2010, Publisher: O'Reilly Media ISBN: 978-0596801991, Year of Publication: 2010
- "Speak Like Churchill, Stand Like Lincoln: 21 Powerful Secrets of History's Greatest Speakers" by James C. Humes, ISBN: 978-0761563518, Year of Publication: 2002, Publisher: Three Rivers Press
- "The Quick and Easy Way to Effective Speaking" by Dale Carnegie, ISBN: 978-0671724009, Year of Publication: 1990, Publisher: Pocket Books

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

(R24 – CSE) II Year Course Structure and Syllabus Applicable From 2024-25 Admitted Batch

II YEAR I SEMESTER (III SEMESTER)

S. No.	Course Code	Course Title	Course Area	Hours Per Week			G 11	Scheme of Examination Maximum Marks		
				L	Т	P	Credits	Internal (CIA)	External (SEE)	Total
		Theory								
1	2430503	Database Management Systems	PC	3	0	0	3	40	60	100
2	2436703	Discrete Mathematics	PC	2	0	0	2	40	60	100
3	2430505	Software Engineering	PC	2	0	0	2	40	60	100
4	2436606	Computer system architecture	PC	3	1	0	4	40	60	100
5	2430507	Data Structures	ES	3	0	0	3	40	60	100
6	243EXL1	Design and Innovation	EL	0	0	2	1	40	60	100
		Laboratory								
1	2430573	Database Management Systems Laboratory	PC	0	0	2	1	40	60	100
2	2430574	Data visualization-Power BI	PC	0	0	2	1	40	60	100
3	2430575	Data Structures Laboratory Using Python	ES	0	0	2	1	40	60	100
	2430588	Internship-I *	PS	0	0	2	1	100	-	100
		Skill Development								
1	2430597	NO SQL Data Bases (MONGO DB)	SDC	0	0	2	1	40	60	100
		Mandatory								
1	2430021	Environmental Science	MC	0	0	0	0	-	-	-

II YEAR II SEMESTER (IV SEMESTER)

	Course Code		Course Area	Hours Per Week			Scheme of Examination Maximum Marks			
S. No.		Course Title		L	T	P	Credits	Max Internal (CIA)	External (SEE)	Total
		Theory								
1	2440508	Design and Analysis of Algorithms	PC	2	0	0	2	40	60	100
2	2440004	Computer Oriented Statistical Methods	BS	3	1	0	4	40	60	100
3	2440512	Artificial Intelligence	PC	3	0	0	3	40	60	100
4	2440510	Operating Systems	PC	3	0	0	3	40	60	100
5	2440511	OOPS through JAVA	ES	3	0	0	3	40	60	100
6	244ExL2	Prototype/model development and Entrepreneurship	EL	0	0	2	1	40	60	100
		Laboratory								
1	2440576	Design and Analysis of Algorithms through JAVA Laboratory	ES	0	0	2	1	40	60	100
2	2440577	Operating Systems Laboratory	PC	0	0	2	1	40	60	100
3	2440581	Artificial Intelligence Laboratory	PC	0	0	2	1	40	60	100
		Skill Development								
1	24X0598	Parallel Computation - RUST	SDC	0	0	2	1	40	60	100
		Mandatory								
1		Indian Knowledge System*	MC	0	0	0	0	-	-	-
Total Credits					1	10	20	400	600	1000

• Students can choose any one of the following course

- i) 24XIKS1:Indian Science, Engineering and Technology
- ii) 24XIKS2:Fundamentals and Applications of Vedic Mathematics
- iii) 24XIKS3:Indian Health, Wellness and Psychology- including Ayurved
- iv) 24XIKS4:Indian Town Planning and Architecture

II - I

DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year- I Sem

L T P C

3 0 0 3

Course Overview:

The purpose of this course is to provide a clear understanding of fundamentals with emphasis on their applications to create and manage large data sets. The course includes database design principles, normalization, concurrent transaction processing, security, recovery and file organization techniques. By using a DBMS, you can easily backup and recover the data. In addition, multi-user access to the database ensures that everyone can work together effectively.

Course Objectives: The students will try to learn

- Understand the role of database management system in an organization and learn the database concepts.
- Design databases using data modeling and Logical database design techniques.
- Construct database queries using relational algebra and calculus and SQL.
- Understand the concept of a database transaction and related concurrent, recovery facilities.
- Learn how to evaluate a set of queries in query processing

Course Outcomes: After successful completion of the course, students should be able to

- · Apply knowledge of fundamentals of DBMS, Database Design
- Understand Relational Model, Relational Algebra and Calculus
- Master the basics of SQL for retrieval and management of data.
- Understand transaction processing and concurrency control.
- Use database storage structures and access techniques

Module - I [8]

Database Systems: A Historical Perspective, File Systems versus a DBMS, Relational Model, Levels of Abstraction in a DBMS, Data Independence, Structure of DBMS.

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design with ER Model.

Module - II [9]

Relational Model: Introduction, Integrity constraints over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.

Relational Algebra and Calculus: Relational Algebra, Tuple relational Calculus, Domain relational calculus.

Module –III [9]

SQL: Queries, Constraints, Triggers: Form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

Schema refinement: Problems caused by redundancy, Decompositions, problems related to decomposition, Reasoning about Functional Dependencies, FIRST, SECOND, THIRD normal forms, BCNF, Lossless join decomposition, Multi-valued dependencies, FOURTH normal form, FIFTH normal form.

Module –IV [10]

Transaction Management: ACID properties, Transactions and Schedules, Concurrent execution of transactions, Lock-based Concurrency control, Performance of locking, Transaction support in SQL, Introduction to crash recovery.

Concurrency control: Serializability and Recoverability, Introduction to lock management, Lock conversions, Dealing with dead locks, Spealized locking techniques, Concurrency control without locking.

Module – V [9]

Storage and Indexing: Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning

Tree structured Indexing: Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXTBOOKS:

- 1. Database Management Systems, Raghu Ramakrishanan, Johannes Gehrke, Tata McGraw Hill 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw hill, Vth edition

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel, 7th Edition.
- 2. SQL The Complete Reference, James R. Groff, Paul N. Weinberg, 3rd Edition,
- 3. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 4. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.

24X6703: DISCRETE MATHEMATICS

B.Tech. II Year- I Sem L T P C 2 0 0 2

Course Objectives: The students will try to learn

- · Concepts of mathematical logic.
- The concepts of sets, relations, and functions.
- Algebraic structures
- Perform the operations associated with sets, functions, and relations.
- Recurrence relations.

Course Outcomes: After successful completion of the course, students should be able to

- Construct precise mathematical proofs
- Understand sets, relations, functions, and discrete structures.
- Analyze and solve counting problems on finite and discrete structures
- Use logical notation
- Formulate problems and solve recurrence relations.

MODULE – I

Mathematical logic: Introduction, Statements and Notation, Connectives, well formed formula, Equivalence of formulas, Normal forms, Theory of inference for the statement calculus, predicate calculus, Inference theory of predicate calculus.

MODULE – II 7

Set theory: Basic concepts of set theory, Set and Operations on sets, Relations and ordering, properties of binary relations in a set, Equivalence relation, Compatibility of relation, partial order relation, partial order set, Functions, Composition of functions, Inverse function, Recursive functions.

Module - III 6

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

MODULE-IV 7

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and permutations, Binomial Coefficients, Binomial and Multinational Theorems, Principle of Inclusion-Exclusion.

MODULE-V 7

Recurrence Relations: Generating Functions of Sequences, Calculating Coefficients of generating functions, Recurrence relations, Solving recurrence relations by substitution and generating functions, Method of Characteristic roots, Solutions of Inhomogeneous Recurrence Relations.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

- 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearson education, 5th edition.
- 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

24X0505: SOFTWARE ENGINEERING

B.Tech. II Year- I Sem
LTPC
2002

Course Description: This course introduces the characteristics of software Generic view of software and the process models. The course emphasizes on software requirements system models, UML Basics, testing strategies, Metrics for process & products, instruction set design, RISK Management, RISK Identification, Quality Management, ISO: 9000 Quality

Pre-requisite: NIL

Course Objectives: The students will try to learn

- Importance of software engineering principles and software process framework
- Contemporary approaches for design models and requirements validation
- Various metrics and quality assurance strategies
- Designing of testing report.
- · Different strategies for testing and risk management

Course Outcomes: After successful completion of the course, students should be able to

- Understand different process models
- Translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Develop a simple testing report
- Understand basics of Risk Management and Quality Management

Module – I 9

INTRODUCTION TO SOFTWARE ENGINEERING: The Evolving Role of Software, Characteristics of Software, The Changing Nature of Software, Legacy Software, Software Myths.

A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models.

Process models: The waterfall model, incremental process models, evolutionary process models, the unified process, Agile models: Extreme Programming, Scrum, DSDM, FDD, CRYSTAL and Lean Software Development

Module – II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document. Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

Module – III 8

System models: Context models, behavioral models, data models, object models, structured methods Design Engineering: Design process and design quality, design concepts, the design model, software architecture, Architectural styles and patterns. Introduction to UML: Basic Building Blocks of UML- Things, Relationships and Diagrams.

Module – IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, verification and validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance, metrics for software quality.

Module – V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.
- 3. The unified modelling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

REFERENCE BOOKS:

- 1. Software Engineering, an Engineering approach- James F. Peters, WitoldPedrycz, John Wiley.
- 2. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 3. Fundamentals of object-oriented design using UML Meiler page-Jones: Pe

2436606: COMPUTER SYSTEM ARCHITECTURE

B.Tech. II Year- I Sem

LTPC

3 1 0 4

Course Overview:

This course introduces the concepts of Digital Computer and the basic Structure of each component. The course majorly works on Data Representation, Decoders, Multiplexers and Memory Unit, Design of Hardwired & Micro Control unit, I/O interface, Array processing units, Instruction pipeline, vector processing, multi-processor and characteristics of multi-processor.

Prerequisites:

NIL

Course Objectives: The students will try to learn

- The functional blocks of Digital Computer, Logic gates and Flip-flops
- Digital Components, Data Representation & Error Detection Codes
- How to perform Register Transfer Micro Operations and Programming Basic Computer.
- Basic processing units and Different Memory systems
- About Pipeline and vector processing units along with I/O Organization

Course Outcomes: After successful completion of the course, students should be able to

- Understand the basic components of Digital computer.
- Demonstrate different types of Digital components and their functional units of a digital computer.
- Evaluate Different types of Micro operations on registers stored in digital computers
- Design Basic Processing units like Hardwired, Micro programmed control unit & memory.
- Design a I/O Interface for communicating with different pipelines

Module-I [12]

Digital Logic Circuits: Digital Computers, logic gates, Boolean algebra, map simplifications, combination circuits, Flip Flops, Sequential circuits, Flip Flop Design Procedure.

Module – II

Digital Components: Decoders, Multiplexers, Registers, Binary Counters, Memory Unit

Data Representation: Data Types, Complements, Fixed Point representation, Floating point representation, other binary codes, Error detection codes.

Module–III [9]

Register Transfer and Micro Operations: register transfer language, register transfer, bus and memory transfer, arithmetic, logic and shift micro operations, arithmetic logic shift unit.

Programming Basic Computer: Machine Language, Assembly language, Assembler, Programming loops, Programming arithmetic and logic operations, Subroutines.

Module–IV [9]

Basic Processing Unit: Hardwired Control, Micro programmed Control

Memory Systems: Memory Hierarchy, Main memory, cache memories, virtual memory, secondary storage, memory management hardware.

Module–V [9]

Input / Output Organization: Introduction to I/O, I/O interface, Modes of transfer, Direct memory access. **Pipeline and Vector Processing:** Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. **Multi Processors**: Characteristics of Multiprocessors

TEXTBOOKS:

1. Computer Systems Architecture – M.Moris Mano, IIIrd Edition, Pearson.

- 1. Computer Architecture and Organization- An Integrated Approach, Miles Murdocca, Vincent Heuring, Second Edition, WileyIndia.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson
- 3. Computer- organization and Design- David A. Paterson and JohnL. Hennessy-Elsevier.
- 4. Fundamentals or Computer Organization and Design, SivaramaDandamudi Springer Int. Edition.
- 5. Digital Design Third Edition, M.Morris Mano, Pearson Education/PHI.
- 6. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

2430507: DATA STRUCTURES (COMMON TO ALL BRANCHES)

B.Tech. II Year I Sem.

LTPC

3 0 0 3

Course Overview:

Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. In this Course, student will explore the most commonly used data structures, including **linked lists, stacks, queues, trees, and Hashing.**

Prerequisites:

A course on "Essentials of Problem Solving using python".

Course Objectives: The students will try to learn

- Various linear and non-linear data structures.
- How to perform operations on data structures.
- Priority Queues and Heaps
- Various searching and sorting techniques.
- Different hashing techniques

Course Outcomes: After successful completion of the course, students should be able to

- Develop solutions by using different types of linked lists
- Solve problems using stack and queue
- Learn different types of trees and their applications
- Implement and know the application of algorithms for searching and sorting.
- Design Programs using Hashing

Module -I: Linked Lists

[9]

Introduction to Data Structures, Linear list – singly linked list, Doubly linked list, Circular linked list - operations and its applications.

Module-II: Stack and Queue

[8]

Stacks- Introduction, Operations, array and linked representations of stacks, stack applications (Infix to postfix conversion and postfix evaluation),

Queues- Introduction, operations, array and linked representations of queues and its applications.

Module-III: Trees [10]

Trees: General Trees, Binary Trees, Implementing Trees, Tree traversals

Search Trees: Binary Search Trees, Balanced search trees- AVL trees, B- trees

Priority Queue and Heaps: Priority queue ADT, Priority queue, Applications, Heap Trees, implementing a priority queue with a Heap, Heap Sort.

Module-IV: Searching and Sorting

[9]

Searching: Linear Search and Binary Search and its applications.

Sorting: Bubble sort, Selection sort, Insertion sort, Merge sort, Quick sort and its applications.

Module - V: Hashing

[8]

Introduction, Hash Functions-Modulo, Middle of Square, Folding, Collision Resolution Techniques-Separate Chaining, Open addressing, Linear Probing, Quadratic Probing, Double Hashing.

TEXTBOOKS:

- 3. Fundamentals of data structures in C, E.Horowitz, S.Sahni and Susan Anderson Freed, 2nd Edition, Universities Press.
- 4. Data structures using C, A.S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/pearson education.

- 5. Data structures: A Pseudocode Approach with C, R.F.Gilberg And B.A.Forouzan, 2nd Edition, Cengage Learning.
- 6. Introduction to data structures in C, Ashok Kamthane, 1st Edition, PEARSON.

2430573: DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year- I Sem

LTPC

0 0 2 1

Course Overview:

The purpose of this course is to provide a clear understanding of fundamentals with emphasis on their applications to create and manage large data sets. The course includes database design principles, normalization, concurrent transaction processing, security, recovery and file organization techniques. By using a DBMS, you can easily backup and recover the data. In addition, multi-user access to the database ensures that everyone can work together effectively.

Course Objectives: The students will try to learn

- Developing of ER diagrams for the given problem.
- Design databases using data modeling and Logical database design techniques.
- Construction of database queries using relational algebra and calculus and SQL.
- The concept of a database transaction and related concurrent, recovery facilities.
- Creation of triggers, stored procedures and cursors.

Course Outcomes: After successful completion of the course, students should be able to

- Develop ER diagram for the given problem.
- Understand Relational Model, Relational Algebra and Calculus
- Master the basics of SQL for retrieval and management of data.
- Creation of triggers
- Use stored procedures and cursors.

Problem statement

"Roadway Travels" is in business since 1997 with several buses connecting different places in India. Its main office is located in Hyderabad.

The company wants to computerize its operations in the following areas:

- Reservation and Ticketing
- Cancellations

Reservation & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in advance and tickets issued to passenger. One Passenger/person can book many tickets (to his/her family).

Cancellations are also directly handed at the booking office.

In the process of computerization of Roadway Travels you have to design and develop a Database which consists the data of Buses, Passengers, Tickets, and Reservation and cancellation details. You should also develop query's using SQL to retrieve the data from database.

The above process involves many steps like

- 1. Analyzing the problem and identifying the Entities and Relationships,
- 2. E-R Model
- 3. Relational Model
- 4. Normalization
- 5. Creating the database
- 6. Querying.

Students are supposed to work on these steps week wise and finally create a complete "Database System" to Roadway Travels. Examples are given at every experiment for guidance to students.

Experiment 1: E-R Model

Analyze the carefully and come up with the entities in it. Identify what data has to be persisted in the database. This contains the entities, attributes etc.

Identify the primary keys for all the entities. Identify the others keys like candidate keys, partial keys, if any.

Example: Entities:

- 1. BUS
- 2. Ticket
- 3. Passenger

Relationships:

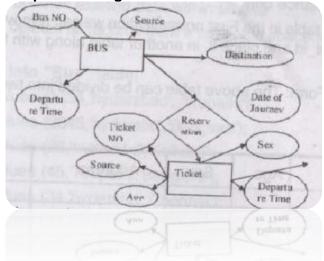
- 1. Reservation
- 2. Cancellation

PRIMARY KEY ATTRIBUTES:

Ticket ID (Ticket Entity)

Passport ID (Passenger Entity)

Bus_No (Bus Entity)


A part from the above mentioned entities you can identify more. The above mentioned are few.

Note: The students is required to submit a document by writing the Entities and keys to the lab teacher.

Experiment 2: Concept design with E-R Model

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong entities and weak entities (if any). Indicate the type of relationships (total / partial). Try to incorporate generalization, aggregation, specialization etc wherever required.

Example: E-R diagram for bus

Note: The students is required to submit a document by drawing the E-R Diagram.

Experiment 3: Relational Model

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion. There are different ways of representing relationships as tables based on the requirement. Different types of attributes (Composite, Multi-valued, and Derived) have different way of representation.

Example: The passenger tables look as below. This is an example. You can add more attributes based on E-Rmodel. This is not a normalized table.

Passenger

Name	Age Sex Address		Ticket_id	Passport ID	

Note: The students is required to submit a document by Represent relationships in a tabular fashion to the labteacher.

Experiment 4: Normalization

Database normalization is a technique for designing relational database tables to minimize duplication of information and, in so doing, to safeguard the database against certain types of logical or structural problems, namely data anomalies. For example, when multiple instances of a given piece of information occur in a table, the possibility exists that these instances will not be kept consistent when the data within the table is updated, leading to a loss of data integrity. A table that is sufficiently normalized is less vulnerable to problems of this kind, because its structure reflects the basic assumptions for when multiple instances of the same information should be represented by a single instance only. For the above table in the First normalization we can remove the multiple valued attribute Ticket_id and place it in another table along with the primary key of passenger.

First Normal Form: The above table can divided into two tables as shown below.Passenger

Name	Age	Sex	Address	Passport ID

Passport ID	Ticket_id			

You can do the second and third normal forms if required. Any how Normalized tables are given at the end.

Experiment 5: Installation of MySQL and practice DDL commands

Installation of MySQL. In this week you will learn Creating databases, How to create tables, altering the database, droping tables and databases if not required. You will also try truncate, rename commands etc.

Example for creation of a normalized "Passenger"

table.CREATE TABLE Passenger(

Passport_id INTEGER PRIMARY

KEY, Name VARCHAR(50) NOT

NULL, Age INTEGER NOT NULL,

Sex CHAR,

Address VARCHAR(50) NOT NULL

);

Similarly create all other tables.

Note: Detailed creation of tables is given at the end.

Experiment 6: Practicing DML commands

DML commandsare used for managing data within schema objects. Some examples:

- SELECT retrieve data from the database
- INSERT insert data into a table
- UPDATE updates existing data within a table
- DELETE deletes all records from a table, the space for the records remain

insert values into "Bus" table:

insert into Bus values (1234, 'hyderabad', 'tirupathi');

insert values into "Passenger" table:

insert into Passenger values(1, 45, 'ramesh', 45, 'M',

'abc123');insert into Passenger values(56, 22, 'seetha', 32,

'F', 'abc55');

Few more Examples of DML commands:

SELECT * FROM Bus; (selects all the attributes and displays)UPDATE Bus SET Bus No = 1 WHERE Bus No

= 2:

Experiment 7: Querying

In this week you are going to practice queries(along with sub queries) using ANY, ALL, IN, EXISTS, NOT EXIST, UNION, INTERSECT, Constraints etc.

Practice the following Queries:

Display unique PNR_No of all passengers.

Display all the names of male passengers.

Display the ticket numbers and names of all the passengers.

Find the ticket numbers of the passengers whose name start with 'r' and ends with 'h'.

Find the names of passengers whose age is between 30 and 45.

Display all the passengers names beginning with 'A'

Display the sorted list of passengers names.

Experiment 8 and Experiment 9: Querying (continued...)

You are going to practice queries using Aggregate functions (COUNT, SUM, AVG, MAX, and MIN), GROUP BY, HAVING and Creation and dropping of VIEWS.

Write a Query to display the information present in the Passenger and cancellation tables. Hint: UseUNION Operator.

Display the number of days in a week on which the 9W01 bus is available.

Find number of tickets booked for each PNR No using GROUP BY CLAUSE. Hint: Use GROUP BYon PNR No.

Find the distinct PNR numbers that are present.

Find the number of tickets booked by a passenger where the number of seats is greater than 1.

Hint: Use GROUP BY, WHERE and HAVING CLAUSES.

Find the total number of cancelled seats.

Experiment 10: Triggers

. Creation of insert trigger, delete trigger, update trigger. Practice triggers using the above database. E.g:

CREATE TRIGGER updatecheck BEFORE UPDATE ON passenger FOR EACH ROW BEGIN IF NEW.TickentNO> 60 THEN

SET New.TickentNO = TicketNo; ELSE

SET New.TicketNo = 0;END IF;

END

Experiment 11; Procedures

Creation of stored procedure, Execution of procedure and modification of procedure. Practice procedures using the database.

E.g:

CREATE PROCEDURE myproc() BEGIN

COUNT(Tickets) FROM SELECT Ticket

age >= 40; END; **Experiment 12: Cursors** In this week you need to do the following: Declare a cursor that defines a result set. Open the cursor to establish the result set. Fetch the data into local variables as needed from the cursor, onerow at a time. Close the cursor when done CREATE PROCEDURE myproc(in customer id INT)BEGIN DECLARE v_id INT; DECLARE v nameVARCHAR(30); DECLARE c1 CURSOR FOR SELECT stdid, stdFirstname FROM studentsss WHERE stdid - in_customer_id; OPEN c1: FETCH c1 INTO v_id, v_name; CLOSE c1; Tables: **BUS** Bus No: VARCAHR: PK(primary key) Source: VARCHAR Destination: VARCHAR Passenger PPNO: VARCHAR(15): PK Name: VARCHAR(15) Age: INT(4) Sex: CHAR(10): Male/FemaleAddress: VARCHAR(20) Passenger_Tickets PPNO: VARCHAR(15): PK Ticket No: NUMERIC(9) Reservation PNR No: NUMERIC(9): FK Journey date: DATETIME(8) No of seats: INT(8) Address: VARCHRA(50) Contact No: NUMERIC(9) --> Should not less than 9 and Should not accept any other character other than intercer STATUS: CHAR(2): Yes/No Cancellation PNR No: NUMERIC(9): FK Journey date: DATETIME(8) No of seats: INT(8) Address: VARCHRA(50) Contact No: NUMERIC(9) --> Should not less than 9 and Should not accept any other character other than interger STATUS: CHAR(2): Yes/No

REFERENCES:

Ticket

WHERE

- 1. Introduction to SQL, Rick F.vanderLans, Pearson education.
- 2. Oracle PL/SQL, B.Rosenzweig and E.Silvestrova, Pearson education.
- 3. Oracle PL/SQL Programming, Steven Feuerstein, SPD.

Ticket_No: NUMERIC(9): FK Journey_date: DATETIME(8) Age: INT(4)

4. SQL & PL/SQL for Oracle 10g, Black Book, Dr. P.S. Deshpande, Dream Tech.

Sex: CHAR(10): Male/Female Source: VARCHAR Destination: VARCHAR Dep_time: VARCHAR

- 5. Oracle Database 11g PL/SQL Programming, M. Mc Laughlin, TMH.
- 6. SQL Fundamentals, J.J. Patrick, Pearson Education.

2430574: DATA VISUALIZATION - POWER BI

B.Tech. II Year- I Sem

0 0 2 1

Course Overview:

This course deals with report design and formatting in Power BI, which offers extraordinary visuals for building reports and dashboards. Additionally, gives acquaintance how to use report navigation to tell a compelling, data-driven story in Power BI.

Prerequisites: Nil

Course Objectives: The students will try to learn

- Importing of data from various sources.
- PowerBI Concepts
- Mapping of Visual Layouts and Graphical Properties.
- How to create Dashboard using PowerBI
- · Developing of charts using PowerBI.

Course Outcomes: After successful completion of the course, students should be able to

- Understand How to import data into Power BI
- Understand Power BI concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real world problems.

List of Experiments:

- 1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization?
- 2. Getting started with Power BI Software using Data file formats, connecting your Data to Power BI, creating basic charts(line, bar charts, Tree maps), Using the Show me panel.
- 3. Power BI Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields.
- 4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Tools and Menus, Formatting specific parts of the view.
- 5. Editing and Formatting Axes, Manipulating Data in Power BI data, Pivoting Power BI data.
- 6. Structuring your data, Sorting and filtering Power BI data, Pivoting Power BI data.
- 7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.
- 8. Creating Dashboards, adding interactivity to your Dashboard, Distributing & Publishing your Visualization.
- 9. Power BI file types, publishing to Power BI Online, Sharing your visualizations, printing, and Exporting.
- 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

- 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
- 2. R Programming for Data Science by Roger D. Peng (References)
- 3. The Art of R Programming by Norman Matloff Cengage Learning India.

2430575: DATA STRUCTURES LAB USING PYTHON

B.Tech. II Year- I Sem

L T P C

0 0 2 1

Course Overview:

Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. In this Course, student will explore the most commonly used data structures, including linked lists, stacks, queues, trees, and Hashing.

Prerequisites:

• A course on "Essentials of Problem Solving".

Course Objectives: The students will try to learn

- Various linear and non-linear data structures.
- How to perform operations on data structures.
- Priority Queues and Heaps
- Various searching and sorting techniques.
- Different hashing techniques

Course Outcomes: After successful completion of the course, students should be able to

- Develop solutions by using different types of linked lists
- Solve problems using stack and queue
- Learn different types of trees and their applications
- Implement and know the application of algorithms for searching and sorting.
- Design Programs using Hashing

List of Experiments

- 1. Write a program that uses functions to perform the following operations on singly linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal
- 2. Write a program that uses functions to perform the following operations on doubly linked list.: i) Creation ii) Insertion iii) Deletion
- **3.** Write a program that uses functions to perform the following operations on circular linked list: i) Creation ii) Insertion iii) Deletion
- 4. Write a program that implement stack operations using i) Arrays ii) Pointers
- **5.** Write a c program to implement infix to postfix conversion using stack.
- **6.** Write a c program to implement postfix evaluation.
- 7. Write a program that implement Queue operations using i) Arrays ii) Pointers
- **8.** Write a program to implement the tree traversal methods using both recursive and non-recursive.
- 9. Write a program to implement tree operations on i) AVL Trees ii) B Trees iii) Heap
- **10.** Write a program that implements the following sorting methods to sort a given list of integers in ascending order i) Bubble sort ii) Selection sort iii) Insertion sort
- **11.** Write a program that implements the following sorting methods to sort a given list of integers in ascending order i) Merge sort ii) Quick sort iii) Heap Sort

- **12.** Write a program that use both recursive and non-recursive functions to perform the following searching operations for a Key value in a given list of integers: i) Linear search ii) Binary search
- **13.** Write a program to implement hashing.

CASE STUDY-1 Balanced Brackets

A bracket is considered to be any one of the following characters: (,), {, }, [, or].

Two brackets are considered to be a *matched pair* if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e.,),], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and ().

A matching pair of brackets is *not balanced* if the set of brackets it encloses are not matched. For example, {[(])} is not balanced because the contents in between { and } are not balanced. The pair of square brackets encloses a single, unbalanced opening bracket, (, and the pair of parentheses encloses a single, unbalanced closing square bracket,].

By this logic, we say a sequence of brackets is balanced if the following conditions are met:

- It contains no unmatched brackets.
- The subset of brackets enclosed within the confines of a matched pair of brackets is also a matched pair of brackets.

Given strings of brackets, determine whether each sequence of brackets is balanced. If a string is balanced, return YES. Otherwise, return NO.

CASE STUDY-2 Minimum Average Waiting Time

Mr. Raju owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Raju simply minimizes the average waiting time of his customers. So he gets to decide who is served first, regardless of how sooner or later a person comes.

Different kinds of pizzas take different amounts of time to cook. Also, once he starts cooking a pizza, he cannot cook another pizza until the first pizza is completely cooked. Let's say we have three customers who come at time t=0, t=1, & t=2 respectively, and the time needed to cook their pizzas is 3, 9, & 6 respectively. If Raju applies first-come, first-served rule, then the waiting time of three customers is 3, 11, & 16 respectively. The average waiting time in this case is (3 + 11 + 16) / 3 = 10. This is not an optimized solution. After serving the first customer at time t=3, Raju can choose to serve the third customer. In that case, the waiting time will be 3, 7, & 17 respectively. Hence the average waiting time is (3 + 7 + 17) / 3 = 9.

Help Raju achieve the minimum average waiting time. For the sake of simplicity, just find the integer part of the minimum average waiting time.

Note:

- The waiting time is calculated as the difference between the time a customer orders pizza (the time at which they enter the shop) and the time she is served.
- Cook does not know about the future orders.

TEXTBOOKS:

- 1. Fundamentals of data structures in C, E.Horowitz, S.Sahni and Susan Anderson Freed, 2nd Edition, Universities Press.
- 2. Data structures using C, A.S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/pearson education.

- 1. Data structures: A Pseudocode Approach with C, R.F.Gilberg And B.A.Forouzan, 2nd Edition, Cengage Learning.
- 2. Introduction to data structures in C, Ashok Kamthane, 1st Edition, PEARSON

2430597: NoSQL Data Bases (MongoDB)

B.Tech. II Year- I Sem

L T P C 0 0 2 1

Programs can be implemented using the **MongoDB Shell** or with **Python/Java/PHP** for connectivity where appropriate.

Module I: Introduction & Data Modeling

- 1. Create and Explore a NoSQL Document Structure
 - o Insert sample JSON documents to show flexible schemas.
- 2. Compare RDBMS vs. MongoDB with a Practical Schema
 - o Model the same data (e.g., user accounts) in SQL and MongoDB.
- 3. Explore MongoDB Data Types
 - o Insert and query documents using types like String, NumberInt, Boolean, Array, Date, etc.
- 4. Basic MongoDB Data Modeling Example
 - o Design an embedded vs. referenced model for blog posts and comments.

Module II: Operators and Commands

- 1. Use Query and Projection Operators
 - o Demonstrate \$eq, \$gt, \$1t, \$in, \$and, \$or, \$exists, and projection { field: 1 }.
- 2. Update Operators and Aggregation Stages
 - o Use \$set, \$inc, \$push in update, and pipeline stages like \$match, \$group, \$sort.
- 3. Sorting, Limiting, and Modifying Queries
 - o Apply .limit(), .sort(), and modifiers like .explain(), .hint().
- 4. Geospatial Commands and User Management
 - o Insert geoJSON data and run \$geoWithin queries; create users and assign roles.

Module III: Database & Collection Management

- 1. Create and Drop a Database
 - o Use use dbName, db.dropDatabase().
- 2. Create and Drop Collections
 - o db.createCollection("students"), db.students.drop().
- 3. Explore Collection Indexes and Options
 - o Create indexes and check with db.collection.getIndexes().
- 4. Set Up Schema Validation Rules
 - o Use JSON schema validation to restrict document structure.

Module IV: CRUD Operations & System Commands

- 1. CRUD: Insert, Query, Update, Delete Documents
 - o Full example of inserting, querying with filters, updating fields, and deleting.
- 2. Use of db.runCommand() and Server Info
 - o Run db.runCommand({ serverStatus: 1 }) and db.isMaster().
- 3. Bulk Operations and Upsert Example
 - o Demonstrate bulkWrite() with mixed inserts and updates.
- 4. Check Collection Stats and Perform Partial Updates
 - o db.collection.stats(), \$set with field targeting.

Module V: Shell, Methods, and Connectivity

- 1. Using MongoDB Shell: Collection and Cursor Methods
 - o Demonstrate .find(), .countDocuments(), .forEach(), .toArray().
- 2. Query Plan Cache and Role Management Commands
 - o db.collection.getPlanCache().clear() and role creation with db.createRole().
- 3. Python MongoDB CRUD App using PyMongo
 - o Connect to MongoDB Atlas/local, and perform CRUD using Python.

II - II

2440508: DESIGN AND ANALYSIS OF ALGORITHMS

B.Tech. II Year- II Sem L T P C

2 0 0 2

Course Overview:

Design and Analysis of Algorithms is a fundamental aspect of computer science that involves creating efficient solutions to computational problems and evaluating their performance. DSA focuses on designing algorithms that effectively address specific challenges and analyzing their efficiency in terms of time and space complexity.

Prerequisites:

• A course on "Data structures".

Course Objectives: The students will try to learn

- Asymptotic performance of algorithms
- Algorithm design strategies to solve science and engineering problems.
- Concepts greedy method and dynamic programming. Applying for several applications like knapsack problem, job sequencing with deadlines, and optimal binary search tree, TSP and so on respectively.
- The methods of backtracking and branch bound techniques to solve the problems like n-queens problem, graph colouring and TSP respectively.
- Concepts of deterministic and non-deterministic algorithms

Course Outcomes: After successful completion of the course, students should be able to

- Compare asymptotic behavior of functions derived from algorithms
- Use Divide and Conquer strategy to address real time problems
- Apply greedy algorithmic design paradigm to solve problems
- Design algorithms using Dynamic Programming and backtracking strategy
- Develop algorithms for problems using branch & bound algorithm design techniques and understand NP-Hard and NP- Complete problems

UNIT-I

Module - I [10]

Introduction: Algorithm, Recurrence Relations, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and little oh notation.

Disjoint Sets: Introduction, union and find Operations.

Module- II [8]

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication

Module –III [9]

Greedy method: General method, applications- knapsack problem, Job sequencing with deadlines, Minimum cost spanning trees, Single source shortest path problem.

Dynamic Programming: General method, applications- All pairs shortest path problem, Optimal binary search trees

Module-IV [10]

Dynamic Programming: 0/1 knapsack problem, Reliability design, Traveling sales person problem.

Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph coloring, Hamiltonian cycles

Module- V [9]

Branch and Bound: General method, applications - 0/1 knapsack problem, LC Branch and Bound solution, FIFO Branch and Bound solution, , Travelling sales person problem,

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem

TEXTBOOKS:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahni and Raja sekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T.H.Cormen, C.E.Leiserson, R.L.Rivest, and C.Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

2440004: COMPUTER ORIENTED STATISTICAL METHODS

II Year B.Tech. II Sem

LTPC

3 1 0 4

Course Overview:

The student achieves the knowledge to analyze the problems using probability and statistics. This course develops skills in analyzing statistical data, mathematical expectation, probability distribution, test of hypothesis, stochastic process and applied statistics problems in engineering. Statistical models are used to identify, analyze and quantify potential risk through probability theory. It enables engineers to understand the risk associate with particular activities or situations, allowing them to take more effective steps to migrate them.

Pre-requisites: Mathematics courses of first year of study

Course Objectives: The student will try to learn

- The concept of random variables.
- Probability distributions of single random variables.
- The sampling theory and the concept of estimation.
- Testing of hypothesis and making statistical inferences.
- The basic idea of curve fitting, correlation and regression.

Course outcomes: After successful completion of the course, students should be able to

CO1: Formulate and solve real world problems involving random variables.

CO2: Identify probability distributions to various case studies.

CO3: Understand the concept of sampling and apply concept of estimation.

CO4: Apply the concept of testing a hypothesis to case studies.

CO5: Correlate the concepts of one unit to the concepts in other units.

UNIT-I: Random Variables

10 L

Overview of the probability, Conditional Probability, Product Rule and the Baye's Rule (All rules without proof).

Random variables: Discrete and continuous random variables and their properties, Expectation, Mean and Variance of random variables.

UNIT-II: Probability distributions

10L

Discrete Probability distributions: Binomial and Poisson distributions, statistical parameters for these

distributions (without proof).

Continuous probability distributions: Normal, Uniform and Exponential distributions, statistical parameters for these distributions (without proof).

UNIT-III: Sampling Distribution & Estimation

8L

Sampling Distributions: Random Sampling, Parameters and Statistics, Sampling Distribution of Means and the Central Limit Theorem, t - Distribution, F-Distribution, Chi-square distribution.

Estimation: Estimating the Mean, Standard Error of a Point Estimate, Confidence Intervals for single sample and two samples.

UNIT-IV: Test of Hypothesis & Stochastic process

10L Statistical

Hypotheses: General concepts, testing a statistical hypothesis, Tests concerning large samples - single mean, two means, single proportion and two proportions.

Stochastic process: Introduction to Stochastic process, transition probability, transition probability matrix, stochastic matrix and regular matrix, Markov chain. Classification states.

UNIT-V: Applied Statistics

10L

Curve fitting by the method of least squares, fitting of straight lines, second degree parabolas and more general curves, Correlation and regression (Linear), Rank correlation (Repeated and Non-Repeated).

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics For Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Khanna Publications.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi.

REFERENCE BOOKS:

- 1. T.T. Soong, Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons Limited, 2004.
- 2. Sheldon M Ross, Probability and Statistics for Engineers and Scientists, Academic Press.
- 3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations.

2440512: ARTIFICIAL INTELLIGENCE

II Year B.Tech. II Sem

LTPC

3 0 0 3

Course Overview:

This course aims to introduce the fundamental concepts of artificial intelligence (AI). Students will develop a broad understanding of AI technologies, their implications, and their potential applications in various fields. The course will emphasize practical examples and real-world case studies to facilitate comprehension and inspire innovative thinking.

Prerequisites:

Data Structures, Discrete Mathematics

Course Objectives: The students will try to learn

- The fundamental concepts and subfields of Al.
- Real-world applications of AI across various industries.
- The knowledge base and application of reasoning
- First-order logic to solve real world problems...
- Recognize the potential of AI to drive innovation and transformation in different domains.

Course Outcomes: After successful completion of the course, students should be able to

- Frame an efficient problem space for a problem expressed in natural language.
- Finalize a search algorithm for a problem and estimate its time and space complexities.
- Know the knowledge base and application of reasoning
- Apply first-order logic to solve real world problems.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.

Module-I [9]

Artificial Intelligence: What is AI, Foundations and History of AI. Propositional and first order logic.

Intelligent Agents: Introduction, how Agents Should Act, Structure of Intelligent Agents, Agent programs, Simple reflex agents, Goal based agents, Utility based agents, Environments and Environment programs.

Problem Solving by Search: Problem-Solving Agents, Formulating Problems, Example Problems, Searching for Solutions, Search Strategies (Breadth-first search, Uniform cost search, Depth-First Search, Iterative deepening Depth-First search, Bidirectional search).

Module –II [8]

Informed Search Methods: Best-First Search, Heuristic Functions, Memory Bounded Search, Iterative Improvement Algorithms.

Game Playing: Introduction, Games as Search Problems, Perfect Decisions in Two-Person Games, Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance, State-of-the- Art Game Programs.

Module –III [9]

Knowledge and Reasoning: A Knowledge-Based Agent, The Wumpus World Environment, Representation, Reasoning, and Logic, Prepositional Logic, An Agent for the Wumpus World.

First-Order Logic: Syntax and Semantics, Extensions and Notational Variations, Using First-Order Logic, Logical Agents for the Wumpus World, A Simple Reflex Agent, Representing Change in the World Building a Knowledge Base: Properties of Good and Bad Knowledge Bases, Knowledge Engineering, The Electronic Circuits Domain, General Ontology, Application: The Grocery Shopping World.

Module –IV [10]

Inference in First-Order Logic: Inference Rules Involving Quantifiers, An Example Proof, Generalized Modus Ponens, Forward and Backward Chaining, Resolution: A Complete Inference Procedure, Completeness of resolution.

Logical Reasoning Systems: Introduction, Indexing, Retrieval, and Unification, Logic Programming Systems, Theorem Provers, Forward-Chaining Production Systems, Frame Systems and Semantic Networks, Description Logics, Managing Retractions, Assumptions, and Explanations

Module –V [9]

Planning: A Simple Planning Agent, From Problem Solving to Planning, Planning in Situation Calculus, Basic Representations for Planning, A Partial-Order Planning Example, A Partial-Order Planning Algorithm, Knowledge Engineering for Planning.

Practical Planning: Practical Planners, Hierarchical Decomposition, Analysis of Hierarchical Decomposition, Resource Constraints.

TEXTBOOKS:

1. Artificial Intelligence A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition, Pearson Education

- 1. Artificial Intelligence, E.Rich and K.Knight, , 3rd Edition, TMH
- 2. Artificial Intelligence, Patrick Henny Winston, 3rd Edition, Pearson Education.
- 3. Artificial Intelligence, ShivaniGoel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

2440510: OPERATING SYSTEMS

II Year B.Tech. II Sem

LTPC

3 0 0 3

Course Overview:

Operating Systems course provides theoretical knowledge about the structure of operating systems, process, memory management and virtual memory implementation principles, input-output management and deadlock avoidance, file system structure. The Operating System manages the computer's software and hardware as well as its memory and processes. Computer operating systems also allow users to see information, create and save files, and use applications such as email and web browsers. Various applications of operating systems include security, job accounting, error detection aids, coordination between other software's and users.

Prerequisites:

A course on Problem solving Using c and c++

Course Objectives: The students will try to learn

- Describes functionalities of main components in operating systems.
- Analyze the algorithms used in process management.
- Gives synchronization and deadlock concepts.
- Analyze the algorithms used in memory management.
- Interpret the concepts of input and output storage for file management

Course Outcomes: After successful completion of the course, students should be able to

- Control accesses a computer and the files that may be shared
- Gain knowledge on process and Process Scheduling
- Understand Deadlock Prevention, Deadlock Handling and Synchronization
- Apply Memory Management techniques in OS.
- Understand File System.

Module-I [10]

Operating System Introduction: What is an operating system do, computer system organization, computer system architecture, operating system structure- operating system operations, process management, memory management, operating system services, System Calls, types of system calls.

Module –II [9]

Process: process concepts, process scheduling, operations on processes, Interprocesses communication, multithreading models, thread libraries.

Process Scheduling: Scheduling criteria, scheduling algorithms, thread scheduling Multiple- Processor Scheduling.

Module –III [9]

Deadlocks- System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock.

Synchronization: background, the critical section problem, peter's solution, Synchronization hardware, semaphores, Classical Problems of Synchronization, Monitors.

Module –IV [8]

Memory Management and Virtual Memory –bacground, Swapping, Contiguous Allocation, Paging structure of the page table, Segmentation.

Virtual memory: background, demand paging page replacement allocation of frames thrashing.

Module –V [8]

File System : File system and implementing file system, file concept access methods, directory and file system structure, File system implementation, Directory implementation, Allocation methods, Free-space Management, efficiency and performance, recovery, NFS.

TEXT BOOKS:

- 7. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, JohnWiley
- 8. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

- 1. Operating Systems Internals and Design Principles, Stallings, 5th Edition, Pearson Education/PHI,2005.
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum 2nd edition, Pearson/PHI
- 4. Unix programming environment, Kernighan and Pike, PHI. / Pearson Education
- 5. Unix Internals The New Frontiers, U.Vahalia, Pearson Education

2440511: OOPS Through JAVA

B.Tech. II Year II - Sem.

LTPC

3 0 0 3

Course Overview:

OOPs Through java makes it possible to create full reusable applications with less code and sorted development time. This course is about the fundamentals of Object-Oriented Programming (OOP) Concept and OOP-based software development methodology. It encourages modular objects for reusable code, ensure well organize and maintainable code via encapsulation, inheritance and polymorphism. OOP finds broad application in software development domains:

- Software Development
- GUI Development
- Game Development
- Database Systems
- · Simulation and Modeling

Prerequisites:

• A course on Problem Solving Using C and C++

Course Objectives: The students will try to learn

- Concepts and features of object oriented programming
- Java Standard API library such as util, io, applets, GUI based controls.
- Exception handling mechanism, multithreading, packages and interfaces.
- How to use Collection framework
- Internet programming using applets and AWT.

Course Outcomes: After successful completion of the course, students should be able to

- Solve real world problems using OOP concepts.
- Understand the use of abstract classes and Interfaces
- Develop multithreaded applications with synchronization.
- Solve problems using java collection framework
- Develop applications using Event Handling

Module - I [10]

Principles of OOPS: OOPS Paradigm, Objects, Classes and Methods, Abstraction, Encapsulation, Inheritance, Polymorphism, Dynamic Binding.

JAVA Introduction: History of Java, Java buzzwords, data types, variables, scope and life time of variables, Type conversion and casting, arrays, operators, Operator Precedence, control statements.

Java String Handling: String Constructors, Special string operations, Character Extraction, String Comparisons, Modifying a string, String Buffer.

Module - II [9]

Classes: Class fundamentals, Declaring Objects, methods, Constructors, this keyword, garbage collection, Overloading methods and constructors, Recursion.

Inheritance, Packages and Interfaces – Inheritance basics, Using super, Creating a multilevel hierarchy, method overriding, Dynamic method dispatch, abstract classes, Using final with inheritance, Defining a package, Finding package and class path, Access protection, importing packages, Defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces.

Module –III [9]

Exception handling - Exception types, uncaught exceptions, using try and catch, Multiple catch classes, nested try statements, throw, throws and finally. Java's built-in exceptions, creating own exception sub classes.

Multithreading - Thread life cycle, Thread Creation using thread class and runnable interface, Creating multiple threads, Thread priorities, Synchronizing threads, Inter thread communication.

Module –IV [9]

Collections Framework: Overview, Collection Interfaces, Collection Classes, Accessing a collection via Iterator, Working with Maps

Java Database Connectivity: Types of Drivers, JDBC architecture, JDBC Classes and Interfaces, Basic steps in Developing JDBC Application, Creating a New Database and Table with JDBC.

Module- V [9]

GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture, components, containers, Layout Manager Classes, Simple Applications using AWT and Swing.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event classes, Handling mouse and keyboard events, Adapter classes.

TEXT BOOKS:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.(Principles of OOPS in UNIT-I)

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.

5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage Learning

2440576:DESIGN AND ANALYSIS OF ALGORITHMS THROUGH JAVA LABORATORY

B.Tech. II Year II – Sem.

0 0 2 1

Course overview:

This course focuses on problem solving using Object oriented concepts by using JAVA programming. It also gives insight implementation of algorithms using JAVA.

Prerequisites: Problem Solving Using C and C++

Co-requisites: Design and Analysis of Algorithms

Course Objectives: The students will try to learn

- Installing and using of any IDE
- Java Standard API library such as util, io, applets, GUI based controls.
- Exception handling mechanism, multithreading, packages and interfaces.
- How to use Collection framework
- How to implement different algorithm models using java...

Course Outcomes: After successful completion of the course, students should be able to

- Install and use any IDE.
- Understand the use of abstract classes and Interfaces
- Develop multithreaded applications with synchronization.
- Solve problems using java collection framework
- Implement algorithms using JAVA.

List of Programs:

1.

- a. Use Eclipse or Net bean platform and acquaint with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- b. Write a java program that prints all real solutions to the quadratic equation ax2 +bx+c=0. Read in a, b, c and use the quadratic formula.
- c. Write a java program to implement Fibonacci series.
- 1. Write Java Programs to perform following:
 - a. To count occurrence of each character in a string.
 - b. To remove duplicate words from a string.
 - c. To print all permutations of a string.

3.

- a. Write a java program to implement method overloading and constructors overloading.
- b. Write a java program to implement method overriding.
- c. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle,

Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

4.

- a. Write a java program to check whether a given string is palindrome.
- b. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

5.

- a. Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- b. Write a Java program that correctly implements the producer consumer problem using the concept of inter thread communication.
- **6.** Write programs to implement following using Collection Framework:
 - a. to add, retrieve & remove element from ArrayList
 - b. to Sort & reverse the LinkedList elements
 - c. to sort ArrayList using Comparable and Comparator
- **7.** Write programs to implement following using Collection Framework:
 - a. to copy elements from HashSet to Array
 - b. to remove duplicate key from hashtable
 - c. to iterate TreeMap
- **8.** Write a program to implement Knapsack problem using greedy method.
- **9.** Write a program to implement Job sequencing with deadlines and Single source shortest path problem using Greedy Method
- 10. Write a program to implement All pairs Shortest path and 0/1 Knapsack problem using Dynamic Programming
- 11. Write a program to implement Optimal Binary Search Tree using Dynamic Programming
- **12.** Write a program to implement n-Queen's problem and Sum of subsets using backtracking method.
- 13. Write a program to implement Travelling sales person using branch and bound, dynamic programming

TEXT BOOKS:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahni and Rajasekharan, University Press.

REFERENCE BOOKS:

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R.Tamassia, John Wiley andsons
- 4. Java The Complete Reference, Herbert Schildt"s, 9th Edition, TATA McGRAW -HILL.

24X0577: OPERATING SYSTEMS LAB

B.Tech. II Year II - Sem.

L T P C 0 0 2 1

Prerequisites:

- A course on "Programming for Problem Solving"
- A course on "Data Structures".

Course Outcomes: The students will be able to:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Implement C programs using Unix system calls.

LISTOFEXPERIMENTS

- 1. Write C programs to simulate the following CPU Scheduling algorithms
- a) FCFS b) SJF c) Round Robin d) priority
- **2.** Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
 - 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
 - **4.** Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
 - 5. Write C programs to illustrate the following IPC mechanisms
- a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- **6.** Write C programs to simulate the following memory management techniques a) Paging b) Segmentation

TEXTBOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
 - 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCEBOOKS:

- Operating Systems Internals and Design Principles Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum 2nd edition, Pearson/PHI
- 4. Unix programming environment, Kernighan and Pike, PHI. / Pearson Education
- 5. Unix Internals The New Frontiers, U.Vahalia, Pearson Education

B.Tech. II Year II - Sem.

L T P C 0 0 2 1

Course Outcomes: The students will be able to:

- Understand current of advanced AI technologies that enable machines to sense, comprehend, act and learn on their own.
- Distinguish class of problems suitable for solving with AI.
- Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the AI.
- Design and create AI suitable for solving particular problem.
- Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.

LIST OF EXPERIMENTS:

- 1. Write a LISP code to perform Arithmetic operations.
- 2. Write a Recursive LISP function which takes one argument as a list and return reverse of the list.
- 3. Write a LISP function to compute difference of squares.(if x > y return x2-y2, Otherwisey2 -x2).
- 4. Write simple fact for following:
 - A. Ram likes mango.
 - B. Seema is a girl.
 - C. Bill likes Cindy.
 - D. Rose is red.
 - E. John owns gold
- 5. Write a prolog program that convert temperature from Celsius to Fahrenheit
- 6. Write simple Prolog functions such as the following. Take into account lists which are tooshort. -- remove the Nth item from the list. -- insert as the Nth item.
- 7. Write a Program to Implement Tic-Tac-Toe game.
- 8. Write a Program to Implement 8-Puzzle problem
- 9. Write a Program to Implement Water-Jug problem
- 10. Write a Program to Implement Monkey Banana Problem.
- 11. Write a Program to Implement N-Queens Problem.
- 12. Write a Program to Implement Min-Max Algorithm.
- 13. Implementation of TSP using heuristic approach using Prolog
- 14. Implementation of Simulated Annealing Algorithm using PROLOG
- 15. Implementation of Hill-climbing to solve 8- Puzzle Problem
- 16. Write a Program see all elements are present in the list or not.
- 17. Write a Program to login so that user can attempt 3 times. After 3rd attempt program must terminate with message "NOT PERMITTED FOR LOGIN"

TEXTBOOKS:

1. Artificial Intelligence A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition, Pearson Education

- 1. Artificial Intelligence, E.Rich and K.Knight, , 3rd Edition, TMH
- 2. Artificial Intelligence, Patrick Henny Winston, 3rd Edition, Pearson Education.
- 3. Artificial Intelligence, ShivaniGoel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

24X0598: PARALLEL COMPUTATION: RUST

B.Tech. II Year II - Sem.

 $\mathsf{L} \quad \mathsf{T} \quad \mathsf{P} \quad \mathsf{C}$

0 0 2 1

Module I – Basics of Rust

1. Hello, World!

o Basic Rust program structure using fn main().

2. Variable Declaration and Mutability

o Using let, mut, and type inference.

3. Data Types Demo

o Use i32, f64, char, bool, etc., in a single program.

4. Arithmetic and Logical Operators

o Calculator-style program showing arithmetic and logical operations.

5. Using cargo for a Simple Project

o Create a simple project using cargo new, build, and run it.

Module II – Ownership and Control Flow

6. Ownership Transfer

o Pass variables to functions and explore ownership and move.

7. Borrowing and References

o Demonstrate &T and &mut T references and restrictions.

8. Lifetimes Example

• Use lifetime annotations in a function returning references.

9. **If-Else Statement**

o Even/odd checker or grade calculator.

10. Looping Examples

o Use for, while, and loop to iterate over arrays or counters.

11. Pattern Matching with match

o Match numbers to print weekdays or match enums.

12. Nested Control Statements

o Combine loops and conditionals in one program (e.g., a simple number guessing game).

Module III – Functions and Structs

13. Functions with Arguments and Return Values

o Create a function to calculate factorial or square of a number.

14. Ownership in Functions

o Pass by value vs. reference in function parameters.

15. Using Structs

o Define a Rectangle struct and calculate area.

16. Tuple Structs and Field Init Shorthand

o Define a Color (u8, u8, u8) and use field shorthand for init.

17. Enums and Pattern Matching

o Define an enum for TrafficLight and match its values.

18. Option Enum Usage

o Safe division function returning Option<f64>.

Module IV – Project Management and Smart Pointers

19. Error Handling with Result

o File reading or division with error handling using Result.

20. Using Box, Rc, and RefCell

o Demonstrate smart pointers with a simple linked list or counter program.

Module- V – Object oriented Programming

21. "Polymorphic Behavior with Trait Objects: A Speakable Animal Zoo"

Covers: Traits, dynamic dispatch, trait objects (&dyn Trait)

22. "Implementing Strategy Pattern with Traits for Payment Processing"

Covers: Object-oriented design using traits and Box<dyn Trait> for dynamic strategy switching

23. "Trait-Based Drawing Application with Heterogeneous UI Components"

Covers: Object-oriented characteristics, trait objects, and allowing different drawable types in a single collection