DHA: 02

а

UDAAN 2026

PHYSICS

Magnetic Effects of Electric Current

Q1	In a current-carrying solenoid, the magnetic field inside is: (A) Zero everywhere (B) Weak and irregular (C) Nearly uniform and strong		conductor is: (A) Parallel to the field (B) Perpendicular to (C) At 45° to the field (D) In the same direct	the field
	(D) Strong at the ends but zero in the middle	Q7	Assertion: Increasing the number of turns in a	
Q2	A solenoid behaves like: (A) A bar magnet (B) A resistor (C) An electric cell (D) A switch		solenoid increases the magnetic field strength. Reason: More turns increase the net field contribution along the axis. (A) Both Assertion and Reason true, Reason correct explanation of Assertion (B) Both Assertion and Reason true, Reason	
Q3	The north pole of a solenoid can be identified using: (A) Fleming's Left-Hand Rule (B) Fleming's Right-Hand Rule (C) Clock face rule	Q8	not correct expla (C) Assertion true, Re (D) Assertion false, R	nation of Assertion eason false
Q4	(D) Ampere's law only The soft iron core inside a solenoid th magnetic field produced.	e	represents: (A) Magnetic field (C) Force	(B) Current (D) Torque
	(A) Weakens (B) Strengthens (C) Reverses (D) Nullifies	Q9	Statement I: Soft iro	on is preferred in ause it retains magnetism
Q5	 A solenoid produces a uniform magnetic field outside. Fleming's Left-Hand Rule predicts the direction of force on a conductor. 1 and 2 both correct 1 correct, 2 incorrect 1 incorrect, 2 correct 		permanently. Statement II: The ability to lose magnetism quickly is important for electromagnets. (A) I true, II false (B) I false, II true (C) Both true (D) Both false	
	(D) Both incorrect	Q10	If the current throu	gh a solenoid is reversed,
Q6	The force on a current-carrying conductor in magnetic field is maximum when the	a	its magnetic poles ₋ (A) Remain same (C) Vanish	_

Answer Key

Q1 C Q2 Α Q3 C

Q4 B

Q5 C

Q6 В

Q7 A

Q8 A

Q9 B

Q10 B

Hints & Solutions

Q1 Text Solution:

The turns of a solenoid are closely packed, and each turn's field adds up, producing a strong, nearly uniform magnetic field inside.

Video Solution:

Q2 Text Solution:

A current-carrying solenoid produces a magnetic field similar to that of a bar magnet, with a north pole at one end and a south pole at the other.

Video Solution:

Q3 Text Solution:

The **clock face rule** says that if the current appears clockwise from one end, that end is the **south pole**, and vice versa.

Video Solution:

Text Solution:

The soft iron core becomes magnetized when placed inside a solenoid, which increases the magnetic field strength due to the combined effect of the solenoid's field and the induced magnetism.

Video Solution:

Q5 Text Solution:

Outside the solenoid, the magnetic field is non-uniform and weak, but Left-Hand Rule indeed predicts force direction.

Video Solution:

Q6 Text Solution:

Fleming's Left-Hand Rule shows that maximum force occurs when current is at **right angles** to the magnetic field.

Video Solution:

Q7 Text Solution:

Both Assertion and Reason true, Reason correct explanation of Assertion

Foundation

Video Solution:

Q8 Text Solution:

In the Left-Hand Rule:

- First finger Magnetic field
- Middle finger Current
- Thumb Force/motion direction.

Video Solution:

Q9 Text Solution:

Soft iron is used in electromagnets because it **loses magnetism quickly** when current is switched off, making it ideal for applications where magnetism needs to be controlled.

Video Solution:

Q10 Text Solution:

Reversing the current in a solenoid reverses the direction of its magnetic field, causing its north and south poles to interchange.

Video Solution:

Android App | iOS App | PW Website